These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 4065224)
1. Interspecies complementation analysis of xeroderma pigmentosum and UV-sensitive Chinese hamster cells. Stefanini M; Keijzer W; Westerveld A; Bootsma D Exp Cell Res; 1985 Dec; 161(2):373-80. PubMed ID: 4065224 [TBL] [Abstract][Full Text] [Related]
2. Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts. Thompson LH; Mooney CL; Brookman KW Mutat Res; 1985; 150(1-2):423-9. PubMed ID: 4000167 [TBL] [Abstract][Full Text] [Related]
3. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells. Karentz D; Cleaver JE Mol Cell Biol; 1986 Oct; 6(10):3428-32. PubMed ID: 3796587 [TBL] [Abstract][Full Text] [Related]
4. Localization of a gene involved in complementation of the defect in xeroderma pigmentosum group A cells on human chromosome 1. Keijzer W; Stefanini M; Bootsma D; Verkerk A; Geurts van Kessel AH; Jongkind JF; Westerveld A Exp Cell Res; 1987 Apr; 169(2):490-501. PubMed ID: 3556430 [TBL] [Abstract][Full Text] [Related]
5. Unscheduled DNA synthesis induced by 4-nitroquinoline-1-oxide in xeroderma pigmentosum cells and their complementing heterodikaryons. Tanaka K; Takebe H; Okada Y Somatic Cell Genet; 1980 Nov; 6(6):739-49. PubMed ID: 6777887 [TBL] [Abstract][Full Text] [Related]
6. Defect in UV-induced unscheduled DNA synthesis in cultured epidermal keratinocytes from xeroderma pigmentosum. Kondo S; Satoh Y; Kuroki T Mutat Res; 1987 Jan; 183(1):95-101. PubMed ID: 2432425 [TBL] [Abstract][Full Text] [Related]
7. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme. Zwetsloot JC; Hoeymakers JH; Vermeulen W; Eker AP; Bootsma D Mutat Res; 1986 Mar; 165(2):109-15. PubMed ID: 3951462 [TBL] [Abstract][Full Text] [Related]
8. Xeroderma pigmentosum patients belonging to complementation group F and efficient liquid-holding recovery of ultraviolet damage. Nishigori C; Fujisawa H; Uyeno K; Kawaguchi T; Takebe H Photodermatol Photoimmunol Photomed; 1991 Aug; 8(4):146-50. PubMed ID: 1814424 [TBL] [Abstract][Full Text] [Related]
9. The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I. van Duin M; Vredeveldt G; Mayne LV; Odijk H; Vermeulen W; Klein B; Weeda G; Hoeijmakers JH; Bootsma D; Westerveld A Mutat Res; 1989 Mar; 217(2):83-92. PubMed ID: 2918869 [TBL] [Abstract][Full Text] [Related]
10. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Zelle B; Lohman PH Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100 [TBL] [Abstract][Full Text] [Related]
11. Transient correction of excision repair defects in fibroblasts of 9 xeroderma pigmentosum complementation groups by microinjection of crude human cell extracts. Vermeulen W; Osseweijer P; de Jonge AJ; Hoeijmakers JH Mutat Res; 1986 May; 165(3):199-206. PubMed ID: 3517635 [TBL] [Abstract][Full Text] [Related]
12. Sodium butyrate stimulates cellular recovery from UV damage in xeroderma pigmentosum cells belonging to complementation group F. Nishigori C; Takebe H Jpn J Cancer Res; 1987 Sep; 78(9):932-6. PubMed ID: 3117749 [TBL] [Abstract][Full Text] [Related]
13. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts. Roza L; Vermeulen W; Bergen Henegouwen JB; Eker AP; Jaspers NG; Lohman PH; Hoeijmakers JH Cancer Res; 1990 Mar; 50(6):1905-10. PubMed ID: 2306742 [TBL] [Abstract][Full Text] [Related]
14. Separation of protein factors that correct the defects in the seven complementation groups of xeroderma pigmentosum cells. Tateishi S; Mori S; Sugano T; Hori N; Ohtsuka E; Yamaizumi M J Biochem; 1995 Oct; 118(4):819-24. PubMed ID: 8576098 [TBL] [Abstract][Full Text] [Related]
15. Cockayne syndrome complementation group B associated with xeroderma pigmentosum phenotype. Itoh T; Cleaver JE; Yamaizumi M Hum Genet; 1996 Feb; 97(2):176-9. PubMed ID: 8566949 [TBL] [Abstract][Full Text] [Related]
16. Complementation studies in cells from patients affected by trichothiodystrophy with normal or enhanced UV photosensitivity. Stefanini M; Lagomarsini P; Giorgi R; Nuzzo F Mutat Res; 1987 Jun; 191(2):117-9. PubMed ID: 3600693 [TBL] [Abstract][Full Text] [Related]
17. Defective DNA repair in cultured melanocytes from xeroderma pigmentosum patients. Yamaguchi J; Mamada A; Kondo S; Satoh Y J Dermatol; 1990 Aug; 17(8):465-72. PubMed ID: 2229649 [TBL] [Abstract][Full Text] [Related]
18. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F. Yagi T; Tatsumi-Miyajima J; Sato M; Kraemer KH; Takebe H Cancer Res; 1991 Jun; 51(12):3177-82. PubMed ID: 2039995 [TBL] [Abstract][Full Text] [Related]
19. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups. de Jonge AJ; Vermeulen W; Keijzer W; Hoeijmakers JH; Bootsma D Mutat Res; 1985; 150(1-2):99-105. PubMed ID: 3839045 [TBL] [Abstract][Full Text] [Related]
20. Genetic complementation analysis of xeroderma pigmentosum. Bootsma D; De Weerd-Kastelein EA; Kleijer WJ; Keÿzez W Basic Life Sci; 1975; 5B():725-8. PubMed ID: 1191194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]