These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Rana computatrix to human language: towards a computational neuroethology of language evolution. Arbib MA Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2345-79. PubMed ID: 14599323 [TBL] [Abstract][Full Text] [Related]
6. Novel effects of CRF on visuomotor behavior and autonomic function in anuran amphibians. Carr JA Gen Comp Endocrinol; 2006 Mar; 146(1):28-35. PubMed ID: 16242688 [TBL] [Abstract][Full Text] [Related]
7. Spatial distribution of a fusiform cell in the optic tectum of Pantodon buchholzi, the African butterfly fish (Teleostei, Osteoglossomorpha). Saidel WM; Mandau MK; Haynes PT Brain Res; 2008 Dec; 1243():63-9. PubMed ID: 18848824 [TBL] [Abstract][Full Text] [Related]
9. A global model of the neural mechanisms responsible for visuomotor coordination in toads. Lara R; Carmona M; Daza F; Cruz A J Theor Biol; 1984 Oct; 110(4):587-618. PubMed ID: 6521484 [TBL] [Abstract][Full Text] [Related]
10. A model of the visual localization of prey by frog and toad. House DH Biol Cybern; 1988; 58(3):173-92. PubMed ID: 3358952 [TBL] [Abstract][Full Text] [Related]
11. Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture. Corbacho F; Nishikawa KC; Weerasuriya A; Liaw JS; Arbib MA Biol Cybern; 2005 Dec; 93(6):391-409. PubMed ID: 16292659 [TBL] [Abstract][Full Text] [Related]
12. Dynamic updating of distributed neural representations using forward models. Sauser EL; Billard AG Biol Cybern; 2006 Dec; 95(6):567-88. PubMed ID: 17143650 [TBL] [Abstract][Full Text] [Related]
13. Functional mapping of the prosencephalic systems involved in organizing predatory behavior in rats. Comoli E; Ribeiro-Barbosa ER; Negrão N; Goto M; Canteras NS Neuroscience; 2005; 130(4):1055-67. PubMed ID: 15653000 [TBL] [Abstract][Full Text] [Related]
14. Ablation of nucleus isthmi leads to loss of specific visually elicited behaviors in the frog Rana pipiens. Caine HS; Gruberg ER Neurosci Lett; 1985 Mar; 54(2-3):307-12. PubMed ID: 3873030 [TBL] [Abstract][Full Text] [Related]
15. [Possible model representations of the neurophysiologic mechanisms of analysis of the direction and rate of movement of a visual object]. Aleĭnikov IuP; Aleĭnikova TV; Mel'kovskaia TV Fiziol Zh SSSR Im I M Sechenova; 1981 Aug; 67(8):1201-7. PubMed ID: 6269914 [No Abstract] [Full Text] [Related]
16. [Spatial organization of frog optic tectum neurons involved in detecting movement]. Aleĭnikov IuP; Aleĭnikova TV; Gogoleva LM Fiziol Zh SSSR Im I M Sechenova; 1980 Jan; 66(1):34-9. PubMed ID: 7364110 [No Abstract] [Full Text] [Related]
17. [Role of retinal projections to the rostral thalamus in the perception of stationary objects in frogs]. Bastakov VA; Manteifel' IuB Fiziol Zh SSSR Im I M Sechenova; 1980 Jan; 66(1):28-33. PubMed ID: 6965914 [TBL] [Abstract][Full Text] [Related]
18. Cholinergic system in the toad's (Bufo bufo L.) visual system. Hock FJ Behav Neural Biol; 1983 Jul; 38(2):313-6. PubMed ID: 6416249 [TBL] [Abstract][Full Text] [Related]
19. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog. Svirskis G; Svirskiene N; Gutmaniene N J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525 [TBL] [Abstract][Full Text] [Related]