BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4066154)

  • 1. Myoglobin structure and regulation of solvent accessibility of heme pocket.
    Bismuto E; Colonna G; Savy F; Irace G
    Int J Pept Protein Res; 1985 Aug; 26(2):195-207. PubMed ID: 4066154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent accessibility of the heme pocket in tuna myoglobin.
    Bismuto E; Savy F; Irace G; Colonna G
    Boll Soc Ital Biol Sper; 1984 Mar; 60(3):459-65. PubMed ID: 6712810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of evolution on the structure of tuna myoglobin.
    Bismuto E; Savy F; Irace G; Colonna G
    Boll Soc Ital Biol Sper; 1983 Dec; 59(12):1773-9. PubMed ID: 6671035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trimethylphosphine binding to horse-heart and sperm-whale myoglobins. Kinetics, proton magnetic resonance assignment and nuclear Overhauser effect investigation of the heme pocket.
    Brunel C; Bondon A; Simonneaux G
    Eur J Biochem; 1993 Jun; 214(2):405-14. PubMed ID: 8513790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolding pathway of myoglobin: effect of denaturants on solvent accessibility to tyrosyl residues detected by second-derivative spectroscopy.
    Ragone R; Colonna G; Bismuto E; Irace G
    Biochemistry; 1987 Apr; 26(8):2130-4. PubMed ID: 3620442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional consequences of haem orientational disorder in sperm-whale and yellow-fin-tuna myoglobins.
    Aojula HS; Wilson MT; Morrison IG
    Biochem J; 1987 Apr; 243(1):205-10. PubMed ID: 3606571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic aspects of the heme-binding site in phylogenetically distant myoglobins.
    Bismuto E; Irace G; Colonna G; Jameson DM; Gratton E
    Biochim Biophys Acta; 1987 Jun; 913(2):150-4. PubMed ID: 3593736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence decay kinetics of the tryptophyl residues of myoglobin: effect of heme ligation and evidence for discrete lifetime components.
    Willis KJ; Szabo AG; Zuker M; Ridgeway JM; Alpert B
    Biochemistry; 1990 Jun; 29(22):5270-5. PubMed ID: 2383545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoglobin interspecies structural differences: effects on autoxidation and oxygenation.
    Livingston DJ; Watts DA; Brown WD
    Arch Biochem Biophys; 1986 Aug; 249(1):106-15. PubMed ID: 3740846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular dichroism studies of myoglobin and leghemoglobin.
    Nicola NA; Minasian E; Appleby CA; Leach SJ
    Biochemistry; 1975 Nov; 14(23):5141-9. PubMed ID: 1238108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoxidation of myoglobin from bigeye tuna fish (Thunnus obesus).
    Kitahara Y; Matsuoka A; Kobayashi N; Shikama K
    Biochim Biophys Acta; 1990 Mar; 1038(1):23-8. PubMed ID: 2317515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin.
    Rohlfs RJ; Mathews AJ; Carver TE; Olson JS; Springer BA; Egeberg KD; Sligar SG
    J Biol Chem; 1990 Feb; 265(6):3168-76. PubMed ID: 2303446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of heme reactivity in myoglobin and leghemoglobin: thermal difference spectra.
    Nicola NA; Leach SJ
    Biochemistry; 1977 Jan; 16(1):50-8. PubMed ID: 556670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of myoglobin from apoprotein and heme, monitored by stopped-flow absorption, fluorescence and circular dichroism.
    Kawamura-Konishi Y; Kihara H; Suzuki H
    Eur J Biochem; 1988 Jan; 170(3):589-95. PubMed ID: 3338455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme and cysteine microenvironments of tuna apomyoglobin. Evidence of two independent unfolding regions.
    Colonna G; Balestrieri C; Bismuto E; Servillo L; Irace G
    Biochemistry; 1982 Jan; 21(2):212-5. PubMed ID: 7074010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H-NMR study of the mechanism of assembly and equilibrium heme orientation of sperm whale myoglobin reconstituted with protohemin type-isomers.
    Hauksson JB; La Mar GN; Pande U; Pandey RK; Parish DW; Singh JP; Smith KM
    Biochim Biophys Acta; 1990 Nov; 1041(2):186-94. PubMed ID: 2265204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies on CO binding to reconstituted myoglobins with four synthetic hemes; structural control in ligand binding to myoglobin.
    Sato T; Tanaka N; Neya S; Funasaki N; Iizuka T; Shiro Y
    Biochim Biophys Acta; 1992 May; 1121(1-2):1-7. PubMed ID: 1599931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions among residues CD3, E7, E10, and E11 in myoglobins: attempts to simulate the ligand-binding properties of Aplysia myoglobin.
    Smerdon SJ; Krzywda S; Brzozowski AM; Davies GJ; Wilkinson AJ; Brancaccio A; Cutruzzolá F; Allocatelli CT; Brunori M; Li T
    Biochemistry; 1995 Jul; 34(27):8715-25. PubMed ID: 7612611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational substates of myoglobin detected by extrinsic dynamic fluorescence studies.
    Bismuto E; Sirangelo I; Irace G
    Biochemistry; 1989 Sep; 28(19):7542-5. PubMed ID: 2611199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional aspects of the heart ventricle myoglobin of bluefin tuna.
    Colonna G; Irace G; Bismuto E; Servillo L; Balestrieri C
    Comp Biochem Physiol A Comp Physiol; 1983; 76(3):481-5. PubMed ID: 6139221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.