BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 4066609)

  • 1. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.
    Singer ME; Finnerty WR
    J Bacteriol; 1985 Dec; 164(3):1011-6. PubMed ID: 4066609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism.
    Singer ME; Finnerty WR
    J Bacteriol; 1985 Dec; 164(3):1017-24. PubMed ID: 2933391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-chain alcohol and aldehyde dehydrogenase activities in Acinetobacter calcoaceticus strain HO1-N.
    Fox MG; Dickinson FM; Ratledge C
    J Gen Microbiol; 1992 Sep; 138(9):1963-72. PubMed ID: 1402794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics.
    Singer ME; Tyler SM; Finnerty WR
    J Bacteriol; 1985 Apr; 162(1):162-9. PubMed ID: 2984172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-1.
    Ishige T; Tani A; Sakai Y; Kato N
    Appl Environ Microbiol; 2000 Aug; 66(8):3481-6. PubMed ID: 10919810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Alcohol oxidation by Candida guilliermondii yeasts grown on hexadecanol].
    Krauzova VI; Komarova GN; Il'chenko AP; Gulevskaia SA
    Mikrobiologiia; 1984; 53(4):621-7. PubMed ID: 6384744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.
    Iwama R; Kobayashi S; Ohta A; Horiuchi H; Fukuda R
    J Biol Chem; 2014 Nov; 289(48):33275-86. PubMed ID: 25315778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts.
    Rizzo WB; Craft DA
    J Clin Invest; 1991 Nov; 88(5):1643-8. PubMed ID: 1939650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function.
    Rizzo WB
    Biochim Biophys Acta; 2014 Mar; 1841(3):377-89. PubMed ID: 24036493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Temperature dependence of membrane-bound aldehyde dehydrogenase from Acinetobacter: effect of solubilization and chain length of the substrates].
    Sorger H; Kretschmer K; Aurich H
    Biomed Biochim Acta; 1986; 45(3):315-9. PubMed ID: 3707551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane.
    Makula RA; Lockwood PJ; Finnerty WR
    J Bacteriol; 1975 Jan; 121(1):250-8. PubMed ID: 1116989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hydrocarbon metabolism in a marine bacterium].
    Bertrand JC; Doux HJ; Azoulay E
    Biochimie; 1976; 58(7):843-54. PubMed ID: 184846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty alcohol metabolism in cultured human fibroblasts. Evidence for a fatty alcohol cycle.
    Rizzo WB; Craft DA; Dammann AL; Phillips MW
    J Biol Chem; 1987 Dec; 262(36):17412-9. PubMed ID: 3320042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved fatty aldehyde and wax ester production by overexpression of fatty acyl-CoA reductases.
    Lehtinen T; Efimova E; Santala S; Santala V
    Microb Cell Fact; 2018 Feb; 17(1):19. PubMed ID: 29422050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of Pseudomonas sp. GJ1 to 2-bromoethanol caused by overexpression of an NAD-dependent aldehyde dehydrogenase with low affinity for halogenated aldehydes.
    Van der Ploeg JR; Kingma J; De Vries EJ; Van der Ven JG; Janssen DB
    Arch Microbiol; 1996 Apr; 165(4):258-64. PubMed ID: 8639028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Kinetics of membrane-bound aldehyde dehydrogenase from Acinetobacter calcoaceticus].
    Aurich H; Sorger H; Bergmann R; Lasch J
    Biol Chem Hoppe Seyler; 1987 Feb; 368(2):101-9. PubMed ID: 3566912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subterminal oxidation of n-alkanes in achlorophyllous alga Prototheca sp.
    Sakuradani E; Natsume Y; Takimura Y; Ogawa J; Shimizu S
    J Biosci Bioeng; 2013 Oct; 116(4):472-4. PubMed ID: 23651808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket.
    Bertram JH; Mulliner KM; Shi K; Plunkett MH; Nixon P; Serratore NA; Douglas CJ; Aihara H; Barney BM
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual subcellular localization in the endoplasmic reticulum and peroxisomes and a vital role in protecting against oxidative stress of fatty aldehyde dehydrogenase are achieved by alternative splicing.
    Ashibe B; Hirai T; Higashi K; Sekimizu K; Motojima K
    J Biol Chem; 2007 Jul; 282(28):20763-73. PubMed ID: 17510064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH).
    Buchhaupt M; Guder J; Sporleder F; Paetzold M; Schrader J
    World J Microbiol Biotechnol; 2013 Mar; 29(3):569-75. PubMed ID: 23180547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.