These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 4066722)

  • 1. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle.
    van Eijden TM; de Boer W; Weijs WA
    J Biomech; 1985; 18(10):803-9. PubMed ID: 4066722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics.
    Hefzy MS; Yang H
    J Biomed Eng; 1993 Jul; 15(4):289-302. PubMed ID: 8361154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of the patellofemoral joint.
    van Eijden TM; Kouwenhoven E; Verburg J; Weijs WA
    J Biomech; 1986; 19(3):219-29. PubMed ID: 3700434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of anterior displacement of the tibial tuberosity on patellofemoral biomechanics.
    van Eijden TM; Kouwenhoven E; Weijs WA
    Int Orthop; 1987; 11(3):215-21. PubMed ID: 3623759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distal femoral condyle is more internally rotated to the patellar tendon at 90° of flexion in normal knees.
    Kawahara S; Okazaki K; Matsuda S; Nakahara H; Okamoto S; Iwamoto Y
    J Orthop Surg Res; 2015 Apr; 10():54. PubMed ID: 25906977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological sagittal plane patellar kinematics during dynamic deep knee flexion.
    Hamai S; Dunbar NJ; Moro-oka TA; Miura H; Iwamoto Y; Banks SA
    Int Orthop; 2013 Aug; 37(8):1477-82. PubMed ID: 23778643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forces acting on the patella during maximal voluntary contraction of the quadriceps femoris muscle at different knee flexion/extension angles.
    van Eijden TM; Weijs WA; Kouwenhoven E; Verburg J
    Acta Anat (Basel); 1987; 129(4):310-4. PubMed ID: 3630619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effects of patellar positioning on intraoperative knee joint gap measurement in total knee arthroplasty.
    Gejo R; McGarry MH; Jun BJ; Hofer JK; Kimura T; Lee TQ
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):352-8. PubMed ID: 20117864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of the patellar articulation. Effects of patellar ligament length studied with a mathematical model.
    van Eijden TM; Kouwenhoven E; Weijs WA
    Acta Orthop Scand; 1987 Oct; 58(5):560-6. PubMed ID: 3425289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-angle influences tibiofemoral and patellofemoral kinematics.
    Mizuno Y; Kumagai M; Mattessich SM; Elias JJ; Ramrattan N; Cosgarea AJ; Chao EY
    J Orthop Res; 2001 Sep; 19(5):834-40. PubMed ID: 11562129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of patellar tendon adhesion to the anterior tibia on knee mechanics.
    Ahmad CS; Kwak SD; Ateshian GA; Warden WH; Steadman JR; Mow VC
    Am J Sports Med; 1998; 26(5):715-24. PubMed ID: 9784821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of knee flexion and quadriceps contraction on the axial view of the patella.
    Masri BA; McCormack RG
    Clin J Sport Med; 1995; 5(1):9-17. PubMed ID: 7614086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro forces in the normal and cruciate-deficient knee during simulated squatting motion.
    Singerman R; Berilla J; Archdeacon M; Peyser A
    J Biomech Eng; 1999 Apr; 121(2):234-42. PubMed ID: 10211459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion.
    Defrate LE; Nha KW; Papannagari R; Moses JM; Gill TJ; Li G
    J Biomech; 2007; 40(8):1716-22. PubMed ID: 17070815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella.
    Stephen JM; Sopher R; Tullie S; Amis AA; Ball S; Williams A
    Knee Surg Sports Traumatol Arthrosc; 2018 Nov; 26(11):3515-3524. PubMed ID: 29679117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic tracking influenced by anatomy in patellar instability.
    Elias JJ; Soehnlen NT; Guseila LM; Cosgarea AJ
    Knee; 2016 Jun; 23(3):450-5. PubMed ID: 26922799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for determining sagittal pediatric patellar height with the Blumensaat-Epiphyseal Containment of the Knee Angle.
    Beck JJ; Boguszewski DV; Joshi NB; Cheung EC; Bowen RE; Oppenheim WL
    J Pediatr Orthop B; 2018 Nov; 27(6):510-515. PubMed ID: 29878975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A planar model of the knee joint to characterize the knee extensor mechanism.
    Yamaguchi GT; Zajac FE
    J Biomech; 1989; 22(1):1-10. PubMed ID: 2914967
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.