These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4066765)

  • 21. Neurotrophin-3 regulates mast cell functions in neonatal mouse skin.
    Metz M; Botchkarev VA; Botchkareva NV; Welker P; Tobin DJ; Knop J; Maurer M; Paus R
    Exp Dermatol; 2004 May; 13(5):273-81. PubMed ID: 15140017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models.
    Conolly RB; Kimbell JS
    Toxicol Appl Pharmacol; 1994 Feb; 124(2):284-95. PubMed ID: 8122275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virus-induced increases in bronchiolar mast cells in Brown Norway rats are associated with both local mast cell proliferation and increases in blood mast cell precursors.
    Sorden SD; Castleman WL
    Lab Invest; 1995 Aug; 73(2):197-204. PubMed ID: 7543629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of a macrolide antibiotic, roxithromycin, on mast cell growth and activation in vitro.
    Shimane T; Asano K; Suzuki M; Hisamitsu T; Suzaki H
    Mediators Inflamm; 2001 Dec; 10(6):323-32. PubMed ID: 11817673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel in vitro human model of hemangioma.
    Tan ST; Hasan Q; Velickovic M; RĂ¼ger BM; Davis RP; Davis PF
    Mod Pathol; 2000 Jan; 13(1):92-9. PubMed ID: 10658915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Animal model of sclerotic skin. II. Bleomycin induced scleroderma in genetically mast cell deficient WBB6F1-W/W(V) mice.
    Yamamoto T; Takahashi Y; Takagawa S; Katayama I; Nishioka K
    J Rheumatol; 1999 Dec; 26(12):2628-34. PubMed ID: 10606374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of endogenous polyamines in the proliferation of normal hematopoietic progenitor cells: high-proliferative potential colony-forming cells (HPP-CFC), and low-proliferative potential colony-forming cells (LPP-CFC). Studies "in vitro".
    Zangheri EO; Labanca AM; Santana H
    Biocell; 1996 Apr; 20(1):97-103. PubMed ID: 8653160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Granulocyte colony-stimulating factor synergistically augments 1,25-dihydroxyvitamin D3-induced monocytic differentiation in murine bone marrow cell cultures.
    Kawase T; Oguro A
    Horm Metab Res; 2004 Jul; 36(7):445-52. PubMed ID: 15305226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mast cells reduce survival of myenteric neurons in culture.
    Sand E; Themner-Persson A; Ekblad E
    Neuropharmacology; 2009 Feb; 56(2):522-30. PubMed ID: 19013185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hemopoietic cell line dependent upon a factor in pokeweed mitogen-stimulated spleen cell conditioning medium.
    Hasthorpe S
    J Cell Physiol; 1980 Nov; 105(2):379-84. PubMed ID: 7462332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proliferation and functional responses of bone marrow-derived mast cells after activation.
    Levi-Schaffer F; Shalit M
    Cell Immunol; 1993 May; 148(2):435-43. PubMed ID: 8495499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Migration of stromal cells supporting mast-cell differentiation into open wound produced in the skin of mice.
    Matsuda H; Kitamura Y
    Exp Hematol; 1981 Jan; 9(1):38-43. PubMed ID: 7016562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clonogenic culture of normal spermatogonia: in vitro regulation of postnatal germ cell proliferation.
    Hasthorpe S
    Biol Reprod; 2003 Apr; 68(4):1354-60. PubMed ID: 12606414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Granulocytic-macrophagic and macrophagic colony stimulating factors elicit colonies of mast cells in mouse bone marrow agar culture. An electron microscope study.
    Brambilla P; Gioria M; Brivio R; Ferrari E; Tramacere P; Colombo L; Sarto C; Mocarelli P
    J Submicrosc Cytol Pathol; 1993 Apr; 25(2):239-46. PubMed ID: 8324727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation and characterization of bone marrow-derived cultured canine mast cells.
    Lin TY; Rush LJ; London CA
    Vet Immunol Immunopathol; 2006 Sep; 113(1-2):37-52. PubMed ID: 16780961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cells regulate their proliferation through alterations in transition probability.
    Shields R; Smith JA
    J Cell Physiol; 1977 Jun; 91(3):345-55. PubMed ID: 558988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inference for an age-dependent, multitype branching-process model of mast cells.
    Nedelman J; Downs H; Pharr P
    J Math Biol; 1987; 25(2):203-26. PubMed ID: 3611982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mathematical model for estimating the ratio of cells having passed the different number of divisions in the culture].
    Vedenkov VG; Volkov IK; Lysenko AS; Chebotarev AN
    Genetika; 1986 Mar; 22(3):449-56. PubMed ID: 3957032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of computer simulation in the design and analysis of cell proliferation experiments.
    Appleton DR
    Acta Histochem Suppl; 1990; 39():131-7. PubMed ID: 2080257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unequal cell division, growth regulation and colony size of mammalian cells: a mathematical model and analysis of experimental data.
    Kimmel M; Axelrod DE
    J Theor Biol; 1991 Nov; 153(2):157-80. PubMed ID: 1787734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.