These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 4067073)

  • 1. The hearing aid feedback path: mathematical simulations and experimental verification.
    Egolf DP; Howell HC; Weaver KA; Barker DS
    J Acoust Soc Am; 1985 Nov; 78(5):1578-87. PubMed ID: 4067073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the open-loop transfer function as a means for understanding acoustic feedback in hearing aids.
    Egolf DP; Haley BT; Howell HC; Legowski S; Larson VD
    J Acoust Soc Am; 1989 Jan; 85(1):454-67. PubMed ID: 2921422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A technique for simulating the amplifier-to-eardrum transfer function of an in situ hearing aid.
    Egolf DP; Haley BT; Howell HC; Larson VD
    J Acoust Soc Am; 1988 Jul; 84(1):1-10. PubMed ID: 3411037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of earmold vents and suboscillatory feedback on hearing aid frequency response.
    Cox RM
    Ear Hear; 1982; 3(1):12-7. PubMed ID: 7060839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of handset proximity on hearing aid feedback.
    Stinson MR; Daigle GA
    J Acoust Soc Am; 2004 Mar; 115(3):1147-56. PubMed ID: 15058336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic feedback path modeling for hearing aids: Comparison of physical position based and position independent models.
    Sankowsky-Rothe T; Schepker H; Doclo S; Blau M
    J Acoust Soc Am; 2020 Jan; 147(1):85. PubMed ID: 32006989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System identification of feedback in hearing aids.
    Hellgren J; Lunner T; Arlinger S
    J Acoust Soc Am; 1999 Jun; 105(6):3481-96. PubMed ID: 10380671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in the feedback of hearing aids.
    Hellgren J; Lunner T; Arlinger S
    J Acoust Soc Am; 1999 Nov; 106(5):2821-33. PubMed ID: 10573898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive measures of directional benefit part 1: estimating the directivity index on a manikin.
    Dittberner AB; Bentler RA
    Ear Hear; 2007 Feb; 28(1):26-45. PubMed ID: 17204897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limitations on insertion gains with vented earmoulds imposed by oscillatory feedback.
    Gatehouse S
    Br J Audiol; 1989 May; 23(2):133-6. PubMed ID: 2752217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of venting on wind noise levels measured at the eardrum.
    Chung K
    Ear Hear; 2013; 34(4):470-81. PubMed ID: 23403807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a reflection model for modeling the dynamic feedback path of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2010 Mar; 127(3):1458-68. PubMed ID: 20329846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Real-Time Acoustic Feedback Cancellation using Adaptive Noise Injection Algorithm.
    Patel K; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():972-975. PubMed ID: 33018147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room reverberation effects in hearing aid feedback cancellation.
    Kates JM
    J Acoust Soc Am; 2001 Jan; 109(1):367-78. PubMed ID: 11206165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuating the ear canal feedback pressure of a laser-driven hearing aid.
    Khaleghi M; Puria S
    J Acoust Soc Am; 2017 Mar; 141(3):1683. PubMed ID: 28372092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the applicability of instrumental measures for black-box evaluation of static feedback control in hearing aids.
    Madhu N; Wouters J; Spriet A; Bisitz T; Hohmann V; Moonen M
    J Acoust Soc Am; 2011 Aug; 130(2):933-47. PubMed ID: 21877807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting the invariant model from the feedback paths of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2011 Jul; 130(1):350-63. PubMed ID: 21786904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A time-domain digital simulation of hearing aid response.
    Kates JM
    J Rehabil Res Dev; 1990; 27(3):279-94. PubMed ID: 2401958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical predictions of electroacoustic frequency response of in situ hearing aids.
    Egolf DP; Tree DR; Feth LL
    J Acoust Soc Am; 1978 Jan; 63(1):264-71. PubMed ID: 632418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback path variability modeling for robust hearing aids.
    Rafaely B; Roccasalva-Firenze M; Payne E
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2665-73. PubMed ID: 10830388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.