These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4067079)

  • 1. Click lateralization is related to the beta component of the dichotic brainstem auditory evoked potentials of human subjects.
    Furst M; Levine RA; McGaffigan PM
    J Acoust Soc Am; 1985 Nov; 78(5):1644-51. PubMed ID: 4067079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of binaural click lateralization by brainstem auditory evoked potentials.
    Furst M; Eyal S; Korczyn AD
    Hear Res; 1990 Nov; 49(1-3):347-59. PubMed ID: 2292506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for separate processing in the human brainstem of interaural intensity and temporal disparities for sound lateralization.
    Pratt H; Polyakov A; Kontorovich L
    Hear Res; 1997 Jun; 108(1-2):1-8. PubMed ID: 9213116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping lateralization of click trains in younger and older populations.
    Babkoff H; Muchnik C; Ben-David N; Furst M; Even-Zohar S; Hildesheimer M
    Hear Res; 2002 Mar; 165(1-2):117-27. PubMed ID: 12031521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaural delay-dependent changes in the binaural difference potential of the human auditory brain stem response.
    Riedel H; Kollmeier B
    Hear Res; 2006 Aug; 218(1-2):5-19. PubMed ID: 16762518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory time-intensity cues in the binaural interaction component of the auditory evoked potentials.
    McPherson DL; Starr A
    Hear Res; 1995 Sep; 89(1-2):162-71. PubMed ID: 8600122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent or integrated processing of interaural time and level differences in human auditory cortex?
    Altmann CF; Terada S; Kashino M; Goto K; Mima T; Fukuyama H; Furukawa S
    Hear Res; 2014 Jun; 312():121-7. PubMed ID: 24709274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brainstem lesions and click lateralization in patients with multiple sclerosis.
    Furst M; Levine RA; Korczyn AD; Fullerton BC; Tadmor R; Algom D
    Hear Res; 1995 Jan; 82(1):109-24. PubMed ID: 7744707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants.
    Salloum CA; Valero J; Wong DD; Papsin BC; van Hoesel R; Gordon KA
    Ear Hear; 2010 Aug; 31(4):441-56. PubMed ID: 20489647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear contributions to the precedence effect.
    Verhulst S; Bianchi F; Dau T
    Adv Exp Med Biol; 2013; 787():283-91. PubMed ID: 23716234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses.
    Junius D; Riedel H; Kollmeier B
    Hear Res; 2007 Mar; 225(1-2):91-104. PubMed ID: 17270375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.
    Altmann CF; Ueda R; Bucher B; Furukawa S; Ono K; Kashino M; Mima T; Fukuyama H
    Neuroimage; 2017 Oct; 159():185-194. PubMed ID: 28756239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binaural interaction in brainstem potentials of human subjects.
    Levine RA
    Ann Neurol; 1981 Apr; 9(4):384-93. PubMed ID: 7224602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the click-evoked binaural interaction potential, beta, of humans.
    Levine RA; Davis PJ
    Hear Res; 1991 Dec; 57(1):121-8. PubMed ID: 1774203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaural time coincidence detectors are present at birth: evidence from binaural interaction.
    Furst M; Bresloff I; Levine RA; Merlob PL; Attias JJ
    Hear Res; 2004 Jan; 187(1-2):63-72. PubMed ID: 14698088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response.
    Zhang F; Boettcher FA
    J Am Acad Audiol; 2008 Jan; 19(1):82-94. PubMed ID: 18637411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Buildup and breakdown of echo suppression for stimuli presented over headphones-the effects of interaural time and level differences.
    Krumbholz K; Nobbe A
    J Acoust Soc Am; 2002 Aug; 112(2):654-63. PubMed ID: 12186045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences.
    Joris PX; Yin TC
    J Neurophysiol; 1995 Mar; 73(3):1043-62. PubMed ID: 7608754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.