These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 4067702)
1. Contact finite element stress analysis of the hip joint. Rapperport DJ; Carter DR; Schurman DJ J Orthop Res; 1985; 3(4):435-46. PubMed ID: 4067702 [TBL] [Abstract][Full Text] [Related]
2. [Contribution to the study of pelvic stress during weight-bearing. Role of the pubic branch and trabecular bone]. Fabeck L; Descamps PY; Bourgois R; Dhem A Rev Chir Orthop Reparatrice Appar Mot; 1994; 80(3):181-7. PubMed ID: 7899636 [TBL] [Abstract][Full Text] [Related]
3. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty]. Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues. Li Z; Alonso JE; Kim JE; Davidson JS; Etheridge BS; Eberhardt AW Ann Biomed Eng; 2006 Sep; 34(9):1452-62. PubMed ID: 16897423 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. Li Z; Kim JE; Davidson JS; Etheridge BS; Alonso JE; Eberhardt AW J Biomech; 2007; 40(12):2758-66. PubMed ID: 17399721 [TBL] [Abstract][Full Text] [Related]
6. [A study on the stress analysis of the pelvis by means of the three-dimensional photoelastic experiments (author's transl)]. Yoshioka Y; Shiba R Nihon Seikeigeka Gakkai Zasshi; 1981 Feb; 55(2):209-22. PubMed ID: 7276666 [TBL] [Abstract][Full Text] [Related]
7. A contribution to the functional morphology of articular surfaces. Tillmann B Norm Pathol Anat (Stuttg); 1978; 34():1-50. PubMed ID: 693316 [TBL] [Abstract][Full Text] [Related]
8. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372 [TBL] [Abstract][Full Text] [Related]
9. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis. Chegini S; Beck M; Ferguson SJ J Orthop Res; 2009 Feb; 27(2):195-201. PubMed ID: 18752280 [TBL] [Abstract][Full Text] [Related]
10. Contact finite element stress analysis of porous ingrowth acetabular cup implantation, ingrowth, and loosening. Rapperport DJ; Carter DR; Schurman DJ J Orthop Res; 1987; 5(4):548-61. PubMed ID: 3681529 [TBL] [Abstract][Full Text] [Related]
11. Load transfer across the pelvic bone. Dalstra M; Huiskes R J Biomech; 1995 Jun; 28(6):715-24. PubMed ID: 7601870 [TBL] [Abstract][Full Text] [Related]
12. Contact pressures in the flexed hip joint during lateral trochanteric loading. Sparks DR; Beason DP; Etheridge BS; Alonso JE; Eberhardt AW J Orthop Res; 2005 Mar; 23(2):359-66. PubMed ID: 15734249 [TBL] [Abstract][Full Text] [Related]
13. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain. Ghosh R; Pal B; Ghosh D; Gupta S Comput Methods Biomech Biomed Engin; 2015; 18(7):697-710. PubMed ID: 24156480 [TBL] [Abstract][Full Text] [Related]
14. Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum. Pawaskar SS; Grosland NM; Ingham E; Fisher J; Jin Z J Biomech; 2011 May; 44(8):1536-42. PubMed ID: 21439570 [TBL] [Abstract][Full Text] [Related]
15. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses]. Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics. Yao J; Salo AD; Lee J; Lerner AL J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743 [TBL] [Abstract][Full Text] [Related]
17. Numerical simulations of the 3D virtual model of the human hip joint, using finite element method. Grecu D; Pucalev I; Negru M; Tarniţă DN; Ionovici N; Diţă R Rom J Morphol Embryol; 2010; 51(1):151-5. PubMed ID: 20191136 [TBL] [Abstract][Full Text] [Related]
18. Physiologically based boundary conditions in finite element modelling. Speirs AD; Heller MO; Duda GN; Taylor WR J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504 [TBL] [Abstract][Full Text] [Related]
19. [Stress distribution on the femoral neck at different abduction angles of the hip joint: a finite element analysis]. Zhang MC; Shi FL; Zhao WD; Ouyang J; Zhong SZ Di Yi Jun Yi Da Xue Xue Bao; 2005 Oct; 25(10):1244-6. PubMed ID: 16234099 [TBL] [Abstract][Full Text] [Related]
20. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model. Bellini CM; Galbusera F; Ceroni RG; Raimondi MT Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]