These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 4067851)

  • 1. Attempts to use cyanide ion to trap imine intermediates in the microsomal N-dealkylation of propranolol: formation of alpha-aminonitriles as artifacts when using ether for extraction.
    Shetty HU; Nelson WL
    J Pharm Sci; 1985 Sep; 74(9):968-71. PubMed ID: 4067851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbinolamines, imines, and oxazolidines from fluorinated propranolol analogs. (19)F NMR and mass spectral characterization and evidence for formation as intermediates in cytochrome P450-catalyzed N-dealkylation.
    Upthagrove AL; Nelson WL
    Drug Metab Dispos; 2001 Aug; 29(8):1114-22. PubMed ID: 11454730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and stereochemical aspects of propranolol metabolism. Diastereomeric 1-(1-hydroxy-2-propylamino)-3-(1-naphthoxy)-2-propanols produced by rat liver microsomal omega-hydroxylation.
    Shetty HU; Nelson WL
    J Med Chem; 1986 Oct; 29(10):2004-8. PubMed ID: 3761318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways of propranolol metabolism. Use of the stable isotope twin-ion GC-MS technique to examine the conversion of propranolol to propranolol-diol by 9000g rat liver supernatant.
    Nelson WL; Burke TR
    Res Commun Chem Pathol Pharmacol; 1978 Jul; 21(1):77-85. PubMed ID: 567368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro release of cyanide from neurotoxic aminonitriles.
    Froines JR; Postlethwait EM; LaFuente EJ; Liu WC
    J Toxicol Environ Health; 1985; 16(3-4):449-60. PubMed ID: 4087311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol.
    Goldszer F; Tindell GL; Walle UK; Walle T
    Res Commun Chem Pathol Pharmacol; 1981 Nov; 34(2):193-205. PubMed ID: 7335950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Fenebrutinib Metabolism and Bioactivation Using MS
    Alsibaee AM; Aljohar HI; Attwa MW; Abdelhameed AS; Kadi AA
    Molecules; 2023 May; 28(10):. PubMed ID: 37241965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping of metabolically generated electrophilic species with cyanide ion: metabolism of methapyrilene.
    Ziegler R; Ho B; Castagnoli N
    J Med Chem; 1981 Oct; 24(10):1133-8. PubMed ID: 7328575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen.
    Ushakov DB; Gilmore K; Kopetzki D; McQuade DT; Seeberger PH
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):557-61. PubMed ID: 24288288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable contribution of CYP2D6 to the N-dealkylation of S-(-)-propranolol by human liver microsomes.
    Rowland K; Ellis SW; Lennard MS; Tucker GT
    Br J Clin Pharmacol; 1996 Sep; 42(3):390-3. PubMed ID: 8877032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective oxidative metabolism of propranolol in the microsomal fraction from rat and human liver. Use of deuterium labeling and pseudoracemic mixtures.
    Nelson WL; Shetty HU
    Drug Metab Dispos; 1986; 14(4):506-8. PubMed ID: 2874001
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis and identification of 3-(4-hydroxy-1-naphthoxy)lactic acid as a metabolite of propranolol in the rat, in man, and in the rat liver 9000 g supernatant fraction.
    Talaat RE; Nelson WL
    Drug Metab Dispos; 1986; 14(2):202-7. PubMed ID: 2870895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the N-dealkylation processes.
    Mutlib AE; Nelson WL
    Drug Metab Dispos; 1990; 18(3):331-7. PubMed ID: 1974195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-dealkylation of propranolol in rat, dog, and man. Chemical and stereochemical aspects.
    Nelson WL; Bartels MJ
    Drug Metab Dispos; 1984; 12(3):345-52. PubMed ID: 6145562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Dealkylation of propranolol: trapping of the 3-(1-naphthoxy)-2-hydroxypropionaldehyde formed in rat liver microsomes.
    Chen CH; Nelson WL
    Drug Metab Dispos; 1982; 10(3):277-8. PubMed ID: 6125363
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolism of propranolol in rat: the fate of the N-isopropyl group.
    Bakke OM; Davies DS; Davies L; Dollery CT
    Life Sci; 1973 Dec; 13(12):1665-75. PubMed ID: 4591189
    [No Abstract]   [Full Text] [Related]  

  • 17. Hepatic microsomal propranolol metabolism in aging male and female rats.
    Fujita S; Ishida R; Obara S; Kitani K; Suzuki T
    J Pharm Sci; 1991 Feb; 80(2):199-200. PubMed ID: 2051331
    [No Abstract]   [Full Text] [Related]  

  • 18. Recognition of novel artifacts produced during the microsomal incubation of secondary alicyclic amines in the presence of cyanide.
    Gorrod JW; Sai Y
    Xenobiotica; 1997 Apr; 27(4):389-99. PubMed ID: 9149378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the O-demethylation processes.
    Mutlib AE; Nelson WL
    Drug Metab Dispos; 1990; 18(3):309-14. PubMed ID: 1974191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural identification of imatinib cyanide adducts by mass spectrometry and elucidation of bioactivation pathway.
    Li AC; Yu E; Ring SC; Chovan JP
    Rapid Commun Mass Spectrom; 2014 Jan; 28(1):123-34. PubMed ID: 24285397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.