These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4068373)

  • 1. Effects of temperature and transfer from seawater to freshwater on blood microrheology in Pacific salmon.
    Kikuchi Y; Hughes GM; Koyama T; Kakiuchi Y; Araiso T
    Jpn J Physiol; 1985; 35(4):683-8. PubMed ID: 4068373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformability and intrinsic material properties of neonatal red blood cells.
    Linderkamp O; Nash GB; Wu PY; Meiselman HJ
    Blood; 1986 May; 67(5):1244-50. PubMed ID: 3697506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further characterization of the effects of alpha-1-acid glycoprotein on the passage of human erythrocytes through micropores.
    Maeda H; Morinaga T; Mori I; Nishi K
    Cell Struct Funct; 1984 Sep; 9(3):279-90. PubMed ID: 6509569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Goede JS; Shevkoplyas SS
    Microvasc Res; 2015 Mar; 98():102-7. PubMed ID: 25660474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of high osmotic media on blood viscosity and red blood cell deformability.
    Yamamoto A; Niimi H
    Biorheology; 1983; 20(5):615-22. PubMed ID: 6677281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis.
    Subramani K; Raju SP; Chu X; Warren M; Pandya CD; Hoda N; Fulzele S; Raju R
    Int Immunopharmacol; 2018 Dec; 65():244-247. PubMed ID: 30340103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of blood bank storage on the rheological properties of male and female donor red blood cells.
    Daly A; Raval JS; Waters JH; Yazer MH; Kameneva MV
    Clin Hemorheol Microcirc; 2014; 56(4):337-45. PubMed ID: 23818106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell deformability and protein adsorption on red blood cell surface.
    Kikuchi Y; Koyama T
    Am J Physiol; 1984 Nov; 247(5 Pt 2):H739-47. PubMed ID: 6496755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal, respiratory and ionic regulation in Atlantic salmon (Salmo salar L.) kelts following transfer from fresh water to seawater.
    Talbot C; Stagg RM; Eddy FB
    J Comp Physiol B; 1992; 162(4):358-64. PubMed ID: 1506493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth hormone and seawater adaptation in coho salmon, Oncorhynchus kisutch.
    Sweeting RM; McKeown BA
    Comp Biochem Physiol A Comp Physiol; 1987; 88(1):147-51. PubMed ID: 2889566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma growth hormone levels increase during seawater exposure of sexually mature Atlantic salmon parr (Salmo salar L.).
    Rydevik M; Borg B; Haux C; Kawauchi H; Björnsson BT
    Gen Comp Endocrinol; 1990 Oct; 80(1):9-15. PubMed ID: 2272483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability.
    Kim BJ; Lee YS; Zhbanov A; Yang S
    Analyst; 2019 Apr; 144(9):3144-3157. PubMed ID: 30942211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in carbonic anhydrase activity in coho salmon smolts resulting from physical training and transfer into seawater.
    Zbanyszek R; Smith LS
    Comp Biochem Physiol A Comp Physiol; 1984; 79(2):229-33. PubMed ID: 6148189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheologic and pathophysiologic significance of red cell passage through narrow pores.
    Nakamura T; Hasegawa S; Shio H; Uyesaka N
    Blood Cells; 1994; 20(1):151-65; discussion 166-8. PubMed ID: 7994058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migration.
    Shrimpton JM; Patterson DA; Richards JG; Cooke SJ; Schulte PM; Hinch SG; Farrell AP
    J Exp Biol; 2005 Nov; 208(Pt 21):4069-78. PubMed ID: 16244166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Routine and active metabolic rates of migrating adult wild sockeye salmon (Oncorhynchus nerka Walbaum) in seawater and freshwater.
    Wagner GN; Kuchel LJ; Lotto A; Patterson DA; Shrimpton JM; Hinch SG; Farrell AP
    Physiol Biochem Zool; 2006; 79(1):100-8. PubMed ID: 16380931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in plasma hormone levels during loss of hypoosmoregulatory capacity in mature chum salmon (Oncorhynchus keta) kept in seawater.
    Hirano T; Ogasawara T; Hasegawa S; Iwata M; Nagahama Y
    Gen Comp Endocrinol; 1990 May; 78(2):254-62. PubMed ID: 2354766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB; Meiselman HJ
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass.
    Kameneva MV; Undar A; Antaki JF; Watach MJ; Calhoon JH; Borovetz HS
    ASAIO J; 1999; 45(4):307-10. PubMed ID: 10445736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.