These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Defective synthesis of glycerophosphorylcholine in murine muscular dystrophy; the primary molecular lesion? Infante JP FEBS Lett; 1985 Jul; 186(2):205-10. PubMed ID: 4007163 [TBL] [Abstract][Full Text] [Related]
3. Defective synthesis of polyunsaturated phosphatidylcholines as the primary lesion in Duchenne and murine dy muscular dystrophies. Infante JP Med Hypotheses; 1986 Feb; 19(2):113-6. PubMed ID: 2939329 [TBL] [Abstract][Full Text] [Related]
4. Impaired biosynthesis of highly unsaturated phosphatidylcholines: a hypothesis on the molecular etiology of some muscular dystrophies. Infante JP J Theor Biol; 1985 Sep; 116(1):65-88. PubMed ID: 4046616 [TBL] [Abstract][Full Text] [Related]
5. De novo CDP-choline-dependent glycerophosphorylcholine synthesis and its involvement as an intermediate in phosphatidylcholine synthesis. Infante JP FEBS Lett; 1987 Apr; 214(1):149-52. PubMed ID: 3032677 [TBL] [Abstract][Full Text] [Related]
7. Effects of insulin on protein synthesis in muscles from normal and dystrophic mice. Ballard FJ; Nield MK; Tomas FM Muscle Nerve; 1983 Sep; 6(7):520-3. PubMed ID: 6355840 [TBL] [Abstract][Full Text] [Related]
8. [Phospholipid makeup of the sarcoplasmic reticulum of normal and dystrophic muscular tissue in mice]. Severina VA; Khaĭtina SZ; Dobrynina OV Vopr Med Khim; 1974 May; 20(3):309-13. PubMed ID: 4365754 [No Abstract] [Full Text] [Related]
9. Tubular aggregates in murine dystrophy heterozygotes. Craig ID; Allen IV Muscle Nerve; 1980; 3(2):134-40. PubMed ID: 7366603 [TBL] [Abstract][Full Text] [Related]
10. [Muscle protein turnover in the dystrophic mice]. Mizobuchi M Rinsho Shinkeigaku; 1983 May; 23(5):436-44. PubMed ID: 6883888 [No Abstract] [Full Text] [Related]
11. Contractile properties of soleus muscle during development in normal and dystrophic mice. Taylor RG; Fowler WM; Mason DT Arch Phys Med Rehabil; 1974 Dec; 55(12):531-9. PubMed ID: 4429430 [No Abstract] [Full Text] [Related]
12. Skeletal muscle lipids in normal and dystrophic mice. Pearce PH; Kakulas BA Aust J Exp Biol Med Sci; 1980 Aug; 58(4):397-408. PubMed ID: 7436886 [TBL] [Abstract][Full Text] [Related]
13. Platelet-derived growth factor and its receptors are related to the progression of human muscular dystrophy: an immunohistochemical study. Zhao Y; Haginoya K; Sun G; Dai H; Onuma A; Iinuma K J Pathol; 2003 Sep; 201(1):149-59. PubMed ID: 12950028 [TBL] [Abstract][Full Text] [Related]
14. The effects of muscular dystrophy on craniofacial growth in mice: a study of heterochrony and ontogenetic allometry. Lightfoot PS; German RZ J Morphol; 1998 Jan; 235(1):1-16. PubMed ID: 9397579 [TBL] [Abstract][Full Text] [Related]
15. [Study of membrane proteins in skeletal muscle of normal or dystrophic mice. Effects of isaxonine phosphate (author's transl)]. Lucas-Heron B; Guiheneuc P Nouv Presse Med; 1982 Apr; 11(16):1250-3. PubMed ID: 6896574 [TBL] [Abstract][Full Text] [Related]
16. Myoblast transplantations lead to the expression of the laminin alpha 2 chain in normal and dystrophic (dy/dy) mouse muscles. Vilquin JT; Guérette B; Puymirat J; Yaffe D; Tomé FM; Fardeau M; Fiszman M; Schwartz K; Tremblay JP Gene Ther; 1999 May; 6(5):792-800. PubMed ID: 10505103 [TBL] [Abstract][Full Text] [Related]