BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 4069105)

  • 1. Distribution of histone variants in the sea urchin chromatin fractions obtained by selective micrococcal nuclease digestion.
    Jasinskiene NE; Jasinskas AL; Gineitis AA
    Mol Biol Rep; 1985 Oct; 10(4):199-203. PubMed ID: 4069105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nucleosomes of active chromatin from sea urchin embryo cells are rich in early histone variants].
    Iasinskene NE; Iasinskas AL; Gineĭtis AA
    Mol Biol (Mosk); 1988; 22(1):257-66. PubMed ID: 3374487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site and stage specific action of endogenous nuclease and micrococcal nuclease on histone genes of sea urchin embryos.
    Anderson OD; Yu M; Wilt F
    Dev Biol; 1986 Sep; 117(1):109-13. PubMed ID: 3017792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental study of the structure of sea urchin embryo and sperm chromatin using micrococcal nuclease.
    Keichline LD; Wassarman PM
    Biochim Biophys Acta; 1977 Mar; 475(1):139-51. PubMed ID: 849442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin proteins from normal, vegetalized, and animalized sea urchin embryos.
    Gineitis AA; Stankeviciute JV; Vorob'ev VI
    Dev Biol; 1976 Sep; 52(2):181-92. PubMed ID: 12194431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different micrococcal nuclease cleavage patterns characterize transcriptionally active and inactive sea-urchin histone genes.
    Anello L; Albanese I; Casano C; Palla F; Gianguzza F; Di Bernardo MG; Di Marzo R; Spinelli G
    Eur J Biochem; 1986 Apr; 156(2):367-74. PubMed ID: 3009183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nucleoprotein particles containing a subset of male and female histone variants form during male pronucleus formation in sea urchins.
    Imschenetzky M; Oliver MI; Gutiérrez S; Morín V; Garrido C; Bustos A; Puchi M
    J Cell Biochem; 1996 Dec; 63(4):385-94. PubMed ID: 8978455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification by sequence homology of stage-specific sea urchin embryo histones H1.
    De Groot P; Strickland WN; Brandt WF; Von Holt C
    Biochim Biophys Acta; 1983 Sep; 747(3):276-83. PubMed ID: 6615845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced repeat length of nascent nucleosomal DNA is generated by replicating chromatin in vivo.
    Jakob KM; Ben Yosef S; Tal I
    Nucleic Acids Res; 1984 Jun; 12(12):5015-24. PubMed ID: 6739296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of globin genes and histone variants in micrococcal nuclease-generated subfractions of chromatin from Friend erythroleukemia cells at different malignant states.
    Leonardson KE; Levy SB
    J Cell Biochem; 1994 Jan; 54(1):110-21. PubMed ID: 8126082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin structure of the developmentally regulated early histone genes of the sea urchin Strongylocentrotus purpuratus.
    Fronk J; Tank GA; Langmore JP
    Nucleic Acids Res; 1990 Sep; 18(17):5255-63. PubMed ID: 2402446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone variants and chromatin structure during sea urchin development.
    Arceci RJ; Gross PR
    Dev Biol; 1980 Nov; 80(1):186-209. PubMed ID: 7439530
    [No Abstract]   [Full Text] [Related]  

  • 13. Transient alterations of the chromatin structure of sea urchin early histone genes during embryogenesis.
    Wu TC; Simpson RT
    Nucleic Acids Res; 1985 Sep; 13(17):6185-203. PubMed ID: 2995919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of fractionated rat liver and sea urchin chromatin].
    Turoverova LV; Vorob'ev VI
    Mol Biol (Mosk); 1980; 14(2):338-47. PubMed ID: 7189819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atypical changes in chromatin structure during development in the sea urchin, Lytechinus variegatus.
    Rowland RD; Rill RL
    Biochim Biophys Acta; 1987 Feb; 908(2):169-78. PubMed ID: 3814603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of sperm and late histone cDNAs of the sea urchin with a primer complementary to the conserved 3' terminal palindrome: evidence for tissue-specific and more general histone gene variants.
    Busslinger M; Barberis A
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5676-80. PubMed ID: 2412222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major changes in the 5' and 3' chromatin structure of sea urchin histone genes accompany their activation and inactivation in development.
    Bryan PN; Olah J; Birnstiel ML
    Cell; 1983 Jul; 33(3):843-8. PubMed ID: 6871996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive promoter occupancy by the MBF-1 activator and chromatin modification of the developmental regulated sea urchin alpha-H2A histone gene.
    Di Caro V; Cavalieri V; Melfi R; Spinelli G
    J Mol Biol; 2007 Feb; 365(5):1285-97. PubMed ID: 17134720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S(T)PXX motifs promote the interaction between the extended N-terminal tails of histone H2B with "linker" DNA.
    Lindsey GG; Thompson P
    J Biol Chem; 1992 Jul; 267(21):14622-8. PubMed ID: 1634509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: functional equivalence of the CS H1 and frog H1M (B4) proteins.
    Mandl B; Brandt WF; Superti-Furga G; Graninger PG; Birnstiel ML; Busslinger M
    Mol Cell Biol; 1997 Mar; 17(3):1189-200. PubMed ID: 9032246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.