These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4070542)

  • 1. Microwaves and the cell membrane. II. Temperature, plasma, and oxygen mediate microwave-induced membrane permeability in the erythrocyte.
    Liburdy RP; Vanek PF
    Radiat Res; 1985 May; 102(2):190-205. PubMed ID: 4070542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave bioeffects in the erythrocyte are temperature and pO2 dependent: cation permeability and protein shedding occur at the membrane phase transition.
    Liburdy RP; Penn A
    Bioelectromagnetics; 1984; 5(2):283-91. PubMed ID: 6732882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-stimulated drug release from liposomes.
    Liburdy RP; Magin RL
    Radiat Res; 1985 Aug; 103(2):266-75. PubMed ID: 4023179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwaves and the cell membrane. III. Protein shedding is oxygen and temperature dependent: evidence for cation bridge involvement.
    Liburdy RP; Vanek PF
    Radiat Res; 1987 Mar; 109(3):382-95. PubMed ID: 3562783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential response of the permeability of the rat liver canalicular membrane to sucrose and mannitol following in vivo acute single and multiple exposures to microwave radiation (2.45 GHz) and radiant-energy thermal stress.
    Lange DG; D'Antuono ME; Timm RR; Ishii TK; Fujimoto JM
    Radiat Res; 1993 Apr; 134(1):54-62. PubMed ID: 8475254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwaves and the cell membrane. IV. Protein shedding in the human erythrocyte: quantitative analysis by high-performance liquid chromatography.
    Liburdy RP; Rowe AW; Vanek PF
    Radiat Res; 1988 Jun; 114(3):500-14. PubMed ID: 3375439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A search for nonthermal effects of 434 MHz microwave radiation on whole human blood.
    Dunscombe PB; Gammampila K; Ramsey NW
    Radiat Res; 1983 Nov; 96(2):235-50. PubMed ID: 6647759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Thermal transitions in erythrocyte membranes revealed by their permeability to ANS].
    Chernitskiĭ EA; Vorobeĭ AV; Konev SV
    Biofizika; 1978; 23(1):80-4. PubMed ID: 623828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The erythrocyte as a physical system. The kinetics of transmembrane oxygen transport].
    Fok MV; Zaritskiĭ AR; Prokopenko GA; Grachev VI
    Zh Obshch Biol; 1994; 55(4-5):583-612. PubMed ID: 7975888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A small temperature rise may contribute towards the apparent induction by microwaves of heat-shock gene expression in the nematode Caenorhabditis Elegans.
    Dawe AS; Smith B; Thomas DW; Greedy S; Vasic N; Gregory A; Loader B; de Pomerai DI
    Bioelectromagnetics; 2006 Feb; 27(2):88-97. PubMed ID: 16342196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water permeability of mammalian cells as a function of temperature in the presence of dimethylsulfoxide: correlation with the state of the membrane lipids.
    Rule GS; Law P; Kruuv J; Lepock JR
    J Cell Physiol; 1980 Jun; 103(3):407-16. PubMed ID: 6249829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of decreased serum thyrotropin and increased colonic temperature in rats exposed to microwaves.
    Lu ST; Lebda NA; Pettit S; Michaelson SM
    Radiat Res; 1985 Dec; 104(3):365-86. PubMed ID: 4080981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Alterations of membrane permeability in Escherichia coli and Staphylococcus aureus under microwave].
    Chen W; Hang F; Zhao JX; Tian FW; Zhang H
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):697-701. PubMed ID: 17944375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actions of gamma-radiation on resealed erythrocyte ghosts. A comparison with intact erythrocytes and a study of the effects of oxygen.
    Kong S; Davison AJ; Bland J
    Int J Radiat Biol Relat Stud Phys Chem Med; 1981 Jul; 40(1):19-29. PubMed ID: 6973550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Letter: Exposure of rabbit erythrocytes to microwave radiation.
    Hamrick E; Zinkl JG
    Radiat Res; 1975 Apr; 62(1):164-8. PubMed ID: 1118541
    [No Abstract]   [Full Text] [Related]  

  • 16. Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase.
    Ramundo-Orlando A; Gallerano GP; Stano P; Doria A; Giovenale E; Messina G; Cappelli M; D'Arienzo M; Spassovsky I
    Bioelectromagnetics; 2007 Dec; 28(8):587-98. PubMed ID: 17620303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Athermal alterations in the structure of the canalicular membrane and ATPase activity induced by thermal levels of microwave radiation.
    Phelan AM; Neubauer CF; Timm R; Neirenberg J; Lange DG
    Radiat Res; 1994 Jan; 137(1):52-8. PubMed ID: 8265788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of differently polarised microwave radiation on chromatin in human cells.
    Shckorbatov YG; Pasiuga VN; Kolchigin NN; Grabina VA; Batrakov DO; Kalashnikov VV; Ivanchenko DD; Bykov VN
    Int J Radiat Biol; 2009 Apr; 85(4):322-9. PubMed ID: 19399677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allometric dependence of the life span of mammal erythrocytes on thermal stability and sphingomyelin content of plasma membranes.
    Ivanov IT
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):876-84. PubMed ID: 17398129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of digoxin-specific antibodies on accumulation and binding of digoxin by human erythrocytes.
    Gardner JD; Kilno DR; Swartz TJ; Butler VP
    J Clin Invest; 1973 Aug; 52(8):1820-33. PubMed ID: 4719664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.