These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 4070757)
1. Comparison of motor activity measured by two different methods: optical and inductive systems. Díez-Noguera A; Casamitjana N; Gris PJ; Cambras T; Ribot M Rev Esp Fisiol; 1985 Sep; 41(3):281-5. PubMed ID: 4070757 [TBL] [Abstract][Full Text] [Related]
2. Automated measurement of multivariate locomotor behavior in rodents. Sanberg PR; Hagenmeyer SH; Henault MA Neurobehav Toxicol Teratol; 1985; 7(1):87-94. PubMed ID: 3839052 [TBL] [Abstract][Full Text] [Related]
3. Exposure to T-cycles of 22 and 23 h during lactation modifies the later dissociation of motor activity and temperature circadian rhythms in rats. Anglès-Pujolràs M; Díez-Noguera A; Cambras T Chronobiol Int; 2007; 24(6):1049-64. PubMed ID: 18075798 [TBL] [Abstract][Full Text] [Related]
4. Neural control of circadian rhythms in plasma ACTH, plasma corticosterone and motor activity. Szafarczyk A; Ixart G; Alonso G; Malaval F; Nouguier-Soule J; Assenmacher I J Physiol (Paris); 1981 Mar; 77(8):969-76. PubMed ID: 6281423 [TBL] [Abstract][Full Text] [Related]
5. [A method for evaluating the zoosocial behavior of rats in psychopharmacology]. Petrov VI; Grigor'ev IA; Gorbunov SG Eksp Klin Farmakol; 1996; 59(4):65-9. PubMed ID: 9026196 [TBL] [Abstract][Full Text] [Related]
6. Effect of a short photoperiod on circadian rhythms of body temperature and motor activity in old rats. Benstaali C; Bogdan A; Touitou Y Pflugers Arch; 2002 May; 444(1-2):73-9. PubMed ID: 11976918 [TBL] [Abstract][Full Text] [Related]
7. Electroconvulsive shock alters the rat overt rhythms of motor activity and temperature without altering the circadian pacemaker. Anglès-Pujolràs M; Díez-Noguera A; Soria V; Urretavizcaya M; Menchón JM; Cambras T Behav Brain Res; 2009 Jan; 196(1):37-43. PubMed ID: 18706453 [TBL] [Abstract][Full Text] [Related]
8. Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity. Barcia C; De Pablos V; Bautista-Hernández V; Sanchez-Bahillo A; Fernández-Barreiro A; Poza M; Herrero MT J Neurosci Methods; 2004 Mar; 134(1):59-64. PubMed ID: 15102503 [TBL] [Abstract][Full Text] [Related]
9. [A new method for the automatic recording and analysis of the structure of the motor activity of small animals]. Sukhov AG; Krivets DV; Shmakov VV Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(1):195-8. PubMed ID: 8693790 [No Abstract] [Full Text] [Related]
10. [Analyses of rhythms of the body temperature in free running in rats]. Deprés-Brummer P; Metzger G; Lévi F Pathol Biol (Paris); 1996 Mar; 44(3):150-6. PubMed ID: 8761601 [TBL] [Abstract][Full Text] [Related]
11. Contactless method for the continuous and selective study of motor activity in the laboratory rat. Rech F Physiol Bohemoslov; 1981; 30(2):149-55. PubMed ID: 6454153 [TBL] [Abstract][Full Text] [Related]
12. Direct cell-cell communication: a new approach derived from recent data on the nature and self-organisation of ultradian (circahoralian) intracellular rhythms. Brodsky VY Biol Rev Camb Philos Soc; 2006 Feb; 81(1):143-62. PubMed ID: 16336746 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of alcohol consumption and withdrawal on circadian temperature and activity rhythms in Sprague-Dawley, Lewis, and Fischer male and female rats. Taylor AN; Tio DL; Bando JK; Romeo HE; Prolo P Alcohol Clin Exp Res; 2006 Mar; 30(3):438-47. PubMed ID: 16499484 [TBL] [Abstract][Full Text] [Related]
14. There are basic rest-activity ultradian rhythms of carbon dioxide emission in small laboratory vertebrates characteristic of each species. Stupfel M; Gourlet V; Court L; Perramon A; Mérat P; Lemercerre C Prog Clin Biol Res; 1990; 341A():179-84. PubMed ID: 2120710 [No Abstract] [Full Text] [Related]
15. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae). Oosthuizen MK; Cooper HM; Bennett NC J Biol Rhythms; 2003 Dec; 18(6):481-90. PubMed ID: 14667149 [TBL] [Abstract][Full Text] [Related]
16. Influence of immobilization and motor loading on the 4.5--12 Hz frequency range of the EEG in rats. Cheresharov L; Stomonyakov V; Nikolov N; Boev M Acta Physiol Pharmacol Bulg; 1981; 7(4):29-35. PubMed ID: 7345890 [TBL] [Abstract][Full Text] [Related]
17. Restraint stress delays reentrainment in male and female diurnal and nocturnal rodents. Mohawk JA; Lee TM J Biol Rhythms; 2005 Jun; 20(3):245-56. PubMed ID: 15851531 [TBL] [Abstract][Full Text] [Related]
18. [Reorganization of the circadian rhythms in the inversion of the light-darkness cycle for rats of different inbred strains]. Moshkin MP; Gerlinskaia LA; Kuz'minov SV; Romashov NA Zh Obshch Biol; 1984; 45(1):132-8. PubMed ID: 6702301 [No Abstract] [Full Text] [Related]
19. A method for simultaneous recording and assessment of gut contractions and relaxations in vivo. Krantis A; Glasgow I; McKay AE; Mattar K; Johnson F Can J Physiol Pharmacol; 1996 Aug; 74(8):894-903. PubMed ID: 8960378 [TBL] [Abstract][Full Text] [Related]
20. [The stepwise statistical analysis of free behavior in rats]. Gurevich KG; Toropov AV; Kost NV Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(6):1123-8. PubMed ID: 9929925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]