These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 4071053)

  • 1. Myofibrils bear most of the resting tension in frog skeletal muscle.
    Magid A; Law DJ
    Science; 1985 Dec; 230(4731):1280-2. PubMed ID: 4071053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle.
    Higuchi H; Umazume Y
    Biophys J; 1986 Sep; 50(3):385-9. PubMed ID: 3489489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive force generation and titin isoforms in mammalian skeletal muscle.
    Horowits R
    Biophys J; 1992 Feb; 61(2):392-8. PubMed ID: 1547327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of passive tension on unloaded shortening speed of frog single muscle fibers.
    Claflin DR; Morgan DL; Julian FJ
    Biophys J; 1989 Nov; 56(5):967-77. PubMed ID: 2605306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcomere length and tension changes in tetanized frog muscle fibers after quick stretches and releases.
    Sugi H; Kobayashi T
    Proc Natl Acad Sci U S A; 1983 Oct; 80(20):6422-5. PubMed ID: 6578518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog.
    Colomo F; Piroddi N; Poggesi C; te Kronnie G; Tesi C
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):535-48. PubMed ID: 9147336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length-tension relation in Limulus striated muscle.
    Walcott B; Dewey MM
    J Cell Biol; 1980 Oct; 87(1):204-8. PubMed ID: 7419590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive and active tension in single cardiac myofibrils.
    Linke WA; Popov VI; Pollack GH
    Biophys J; 1994 Aug; 67(2):782-92. PubMed ID: 7948691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of the shortening heat on sarcomere length in fibre bundles from frog semitendinosus muscles.
    Yamada K; Kometani K
    Adv Exp Med Biol; 1984; 170():853-64. PubMed ID: 6741721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.
    Granzier HL; Wang K
    Biophys J; 1993 Nov; 65(5):2141-59. PubMed ID: 8298040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of sarcomere shortening in skinned fibers from frog muscle by white light diffraction.
    Goldman YE
    Biophys J; 1987 Jul; 52(1):57-68. PubMed ID: 3496924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sarcomere length-tension relation in skeletal muscle.
    ter Keurs HE; Iwazumi T; Pollack GH
    J Gen Physiol; 1978 Oct; 72(4):565-92. PubMed ID: 309929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcomere length-resting tension relation in single frog atrial cardiac cells.
    Tarr M; Trank JW; Leiffer P; Shepherd N
    Circ Res; 1979 Oct; 45(4):554-9. PubMed ID: 476872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of connectin in the length-tension relation of skeletal and cardiac muscles.
    Matsubara S; Maruyama K
    Jpn J Physiol; 1977; 27(5):589-600. PubMed ID: 304933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting sarcomere length-tension relation in living frog heart.
    Winegrad S
    J Gen Physiol; 1974 Sep; 64(3):343-55. PubMed ID: 4547293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of changing free Ca2+ on light diffraction intensity and correlation with tension development in skinned fibers of frog skeletal muscle.
    Oba T; Hotta K
    Pflugers Arch; 1983 May; 397(3):243-7. PubMed ID: 6603609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments.
    Horowits R; Podolsky RJ
    J Cell Biol; 1987 Nov; 105(5):2217-23. PubMed ID: 3680378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere length-tension relations of frog skinned muscle fibres at lengths above the optimum.
    Julian FJ; Moss RL
    J Physiol; 1980 Jul; 304():529-39. PubMed ID: 6969305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light diffraction studies of active muscles fibres as a function of sarcomere length.
    Oba T; Baskin RJ; Lieber RL
    J Muscle Res Cell Motil; 1981 Jun; 2(2):215-24. PubMed ID: 7263856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.