These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 407226)

  • 21. Reversible in vitro decrease of L-tyrosine and L-tryptophan influx across the human erythrocyte membrane induced by cytochalasin B, the specific inhibitor of D-glucose transport.
    Widmer J; Raffin Y; Gaillard JM; Bovier P; Tissot R
    Neuropsychobiology; 1990-1991; 24(2):67-73. PubMed ID: 2134113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 7-Acetylcytochalasin B: differential effects on sugar transport and cell motility.
    Lees A; Lin S
    J Supramol Struct; 1979; 12(2):185-94. PubMed ID: 120908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study of the dependence of the human erythrocyte glucose transport system on membrane sulfhydryl groups.
    Smith RP; Ellman GL
    J Membr Biol; 1973; 12(2):177-88. PubMed ID: 4205085
    [No Abstract]   [Full Text] [Related]  

  • 25. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The monosaccharide transporter of the human erythrocyte. Transport activity upon reconstitution.
    Baldwin JM; Gorga JC; Lienhard GE
    J Biol Chem; 1981 Apr; 256(8):3685-9. PubMed ID: 7194337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins.
    Goldin SM; Rhoden V
    J Biol Chem; 1978 Apr; 253(8):2575-83. PubMed ID: 632287
    [No Abstract]   [Full Text] [Related]  

  • 28. Modulation of red blood cell sugar transport by lyso-lipid.
    Naderi S; Carruthers A; Melchior DL
    Biochim Biophys Acta; 1989 Oct; 985(2):173-83. PubMed ID: 2804103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane transport of L-triiodthyronine by human red cell ghosts.
    Holm AC; Jacquemin C
    Biochem Biophys Res Commun; 1979 Aug; 89(3):1006-17. PubMed ID: 486196
    [No Abstract]   [Full Text] [Related]  

  • 30. Binding of cytochalasin B to a red cell membrane protein.
    Lin S; Spudich JA
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1471-6. PubMed ID: 4455264
    [No Abstract]   [Full Text] [Related]  

  • 31. Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport.
    Gorga FR; Lienhard GE
    Biochemistry; 1981 Sep; 20(18):5108-13. PubMed ID: 7295669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High affinity binding of [3H]dihydrocytochalasin B to peripheral membrane proteins related to the control of cell shape in the human red cell.
    Lin DC; Lin S
    J Biol Chem; 1978 Mar; 253(5):1415-9. PubMed ID: 627546
    [No Abstract]   [Full Text] [Related]  

  • 33. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes.
    Zoccoli MA; Lienhard GE
    J Biol Chem; 1977 May; 252(10):3131-5. PubMed ID: 863876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diethylpyrocarbonate interferes with lipid-protein interaction and glucose transport in the human red cell membrane.
    Zimmer G; Lacko L; Wittke B
    Experientia; 1979 May; 35(5):610-2. PubMed ID: 36290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of cytochalasin B photoincorporation into human erythrocyte D-glucose transporter and F-actin.
    Shanahan MF
    Biochemistry; 1983 May; 22(11):2750-6. PubMed ID: 6683567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of cytochalasin B to human erythrocyte glucose transporter.
    Sogin DC; Hinkle PC
    Biochemistry; 1980 Nov; 19(23):5417-20. PubMed ID: 7192569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin.
    Sergeant S; Kim HD
    J Biol Chem; 1985 Nov; 260(27):14677-82. PubMed ID: 2997220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of carrier-mediated and non-mediated permeation processes by cytochalasin B.
    Plagemann PG; Wohlhueter RM; Graff JC; Marz R
    Front Biol; 1978; 46():445-73. PubMed ID: 208876
    [No Abstract]   [Full Text] [Related]  

  • 39. Interaction among anion, cation and glucose transport proteins in the human red cell.
    Janoshazi A; Solomon AK
    J Membr Biol; 1989 Nov; 112(1):25-37. PubMed ID: 2593137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high affinity site for sugar transport at the inner face of the human erythrocyte membrane?
    Foster DM; Jacquez JA; Lieb WR; Stein WD
    Biochim Biophys Acta; 1979 Aug; 555(2):349-51. PubMed ID: 476109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.