These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 4072637)

  • 1. Some problems involved in employing the ERG c-wave in pharmacological experiments: conditioning in pigmented rabbits.
    Nao-i N; Kim SY; Honda Y
    Acta Ophthalmol (Copenh); 1985 Oct; 63(5):567-73. PubMed ID: 4072637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The normal c-wave amplitude in rabbits.
    Naoi N; Kim SY; Honda Y
    Doc Ophthalmol; 1986 Jul; 63(2):121-30. PubMed ID: 3743331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The ERG C-wave during adaptation to the dark and the light in the pigmented rabbit].
    Nao-i N; Honda Y
    Nippon Ganka Gakkai Zasshi; 1987 Jan; 91(1):168-73. PubMed ID: 3591576
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of prolonged uniocular dark adaptation on the direct-current electroretinogram of pigmented and albino rabbits.
    Textorius O; Gottvall E
    Doc Ophthalmol; 1995; 90(3):305-17. PubMed ID: 8846738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-wave of the rabbit electroretinogram during dark-adaptation and the steady-state.
    Wu L; Lurie M; Marmor MF
    Acta Ophthalmol (Copenh); 1981 Aug; 59(4):603-8. PubMed ID: 7315216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low b-wave amplitudes in a strain of rabbits with a pigment epithelium defect.
    Lichtenberger T; Karbaum R; Flade A; Hanitzsch R
    Vision Res; 2000; 40(1):129-36. PubMed ID: 10768047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigment epithelial changes in a strain of pigmented rabbits with low ERG b-wave amplitudes.
    Wrigstad A; Hanitzsch R
    Vision Res; 2004 Jan; 44(1):99-102. PubMed ID: 14599575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term behavior and intra-individual stability of the direct current electroretinogram and of the standing potential in the albino rabbit eye.
    Gottvall E; Textorius O
    Doc Ophthalmol; 2003 Mar; 106(2):195-200. PubMed ID: 12678285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The c-wave of the direct-current-recorded electroretinogram and the standing potential of the albino rabbit eye in response to repeated series of light stimuli of different intensities.
    Textorius O; Gottvall E
    Doc Ophthalmol; 1992; 80(1):91-103. PubMed ID: 1505343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dopamine D(1) receptor blockade on the intensity-response function of ERG b- and d-waves under different conditions of light adaptation.
    Popova E; Kupenova P
    Vision Res; 2011 Jul; 51(14):1627-36. PubMed ID: 21605587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A procedure for recording electroretinogram (ERG) and effect of sodium iodate on ERG in mice].
    Sugimoto S; Imawaka M; Kurata K; Kanamaru K; Ito T; Sasaki S; Ando T; Saijo T; Sato S
    J Toxicol Sci; 1996 Jun; 21 Suppl 1():15-32. PubMed ID: 8709159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration-dependent effects of dopamine on the direct current electroretinogram of pigmented rabbits during prolonged intermittent recording.
    Gottvall E; Textorius O
    Doc Ophthalmol; 2003 Mar; 106(2):161-9. PubMed ID: 12678281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E; Kupenova P
    Vision Res; 2009 Jul; 49(15):2001-10. PubMed ID: 19463849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the direct-current electroretinogram of albino rabbits during prolonged intermittent recording.
    Gottvall E; Textorius O
    Eur J Ophthalmol; 1997; 7(1):73-81. PubMed ID: 9101200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):67-80. PubMed ID: 2298543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The c-wave of the electroretinogram recorded under clinical conditions from rabbits.
    Hamasaki DI; Korabathina K; Patel SR; Liu M; Lam BL
    Doc Ophthalmol; 1997-1998; 94(4):365-81. PubMed ID: 9858096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental observations on the C-wave of the electroretinogram (author's transl)].
    Wu LZ
    Zhonghua Yan Ke Za Zhi; 1981 Jul; 17(4):193-6. PubMed ID: 6802602
    [No Abstract]   [Full Text] [Related]  

  • 18. Origin of electroretinogram amplitude growth during light adaptation in pigmented rats.
    Bui BV; Fortune B
    Vis Neurosci; 2006; 23(2):155-67. PubMed ID: 16638169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paradoxical enhancement of the ERG c-wave by a small dose of sodium iodate.
    Nao-i N; Kim SY; Honda Y
    Acta Ophthalmol (Copenh); 1986 Apr; 64(2):206-11. PubMed ID: 3727961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Nao-i N; Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):54-66. PubMed ID: 1688834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.