These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4074328)

  • 21. Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans.
    Matsushita K; Shinagawa E; Adachi O; Ameyama M
    J Biochem; 1989 Apr; 105(4):633-7. PubMed ID: 2547757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disturbances in the formation of FAD and covalently bound flavins in Novikoff hepatoma from riboflavin-deficient rats.
    Pinto J; Huang YP; Chaudhuri R; Rivlin RS
    Nutr Cancer; 1987; 10(1-2):95-102. PubMed ID: 3615219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ketogluconate production by Gluconobacter strains: enzymes and biotechnological applications.
    Kataoka N
    Biosci Biotechnol Biochem; 2024 Apr; 88(5):499-508. PubMed ID: 38323387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatographic identification of a new flavin derivative in plain yogurt.
    Gliszczyńska A; Koziołowa A
    J Agric Food Chem; 1999 Aug; 47(8):3197-201. PubMed ID: 10552630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Covalently bound flavin in D-6-hydroxynicotine oxidase from Arthrobacter oxidans.
    Brühmüller M; Möhler H; Decker K
    Z Naturforsch B Anorg Chem Org Chem Biochem Biophys Biol; 1972 Sep; 27(9):1073-4. PubMed ID: 4405082
    [No Abstract]   [Full Text] [Related]  

  • 27. [Influence of diverse nucleotide constituents of Pseudomonas fluorescens on the D-glucose-dehydrogenase activity of the bacterium].
    Wurtz B
    C R Seances Soc Biol Fil; 1982; 176(5):700-6. PubMed ID: 6220775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria.
    Ameyama M; Matsushita K; Ohno Y; Shinagawa E; Adachi O
    FEBS Lett; 1981 Aug; 130(2):179-83. PubMed ID: 6793395
    [No Abstract]   [Full Text] [Related]  

  • 30. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and some properties of cholesterol oxidase from Schizophyllum commune with covalently bound flavin.
    Fukuyama M; Miyake Y
    J Biochem; 1979 May; 85(5):1183-93. PubMed ID: 36375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flavin composition of human milk.
    Roughead ZK; McCormick DB
    Am J Clin Nutr; 1990 Nov; 52(5):854-7. PubMed ID: 2239760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Riboflavin phosphorylation is the crucial event in riboflavin transport by isolated rat enterocytes.
    Gastaldi G; Ferrari G; Verri A; Casirola D; Orsenigo MN; Laforenza U
    J Nutr; 2000 Oct; 130(10):2556-61. PubMed ID: 11015489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth, erythrocyte glutathione reductase and liver flavin as indicators of riboflavin status in turkey poults.
    Lee DJ
    Br Poult Sci; 1982 May; 23(3):263-72. PubMed ID: 7104786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-free synthesis of a flavoprotein containing the 8 alpha-(N3-histidyl)-riboflavin linkage.
    Hamm HH; Decker K
    Eur J Biochem; 1980 Mar; 104(2):391-5. PubMed ID: 6988214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fungal riboflavin 5'-hydroxymethyl dehydrogenase catalyzes formation of both the aldehyde (riboflavinal) and the acid (riboflavinoic acid).
    Chen H; McCormick DB
    Biochim Biophys Acta; 1997 Oct; 1342(2):116-8. PubMed ID: 9392520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical synthesis and some properties of 6-substituted flavins.
    Ghisla S; Kenney WC; Knappe WR; McIntire W; Singer TP
    Biochemistry; 1980 Jun; 19(12):2537-44. PubMed ID: 6249335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of some membrane dehydrogenases in Pseudomonas fluorescens.
    Lynch WH
    Can J Microbiol; 1982 Aug; 28(8):907-15. PubMed ID: 6814736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of respiratory infection on tissue riboflavin and flavin enzymes in mice.
    Prasad PA; Lakshmi AV; Suresh P; Bamji MS
    Ann Nutr Metab; 1991; 35(1):19-24. PubMed ID: 2058998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial degradation of riboflavin. VI. Enzymatic conversion of riboflavin to 1-ribityl-2,3-diketo-1,2,3,4-tetrahydro-6, 7-dimethylquinoxaline, urea, and carbon dioxide.
    Harkness DR; Stadtman ER
    J Biol Chem; 1965 Oct; 240(10):4089-96. PubMed ID: 5842071
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.