These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 4074708)

  • 1. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration.
    Blewitt MG; Chung LA; London E
    Biochemistry; 1985 Sep; 24(20):5458-64. PubMed ID: 4074708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state.
    Zhao JM; London E
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2002-6. PubMed ID: 3457371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of high pH upon diphtheria toxin conformation and model membrane association: role of partial unfolding.
    Kieleczawa J; Zhao JM; Luongo CL; Dong LY; London E
    Arch Biochem Biophys; 1990 Nov; 282(2):214-20. PubMed ID: 2241144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation and model membrane interactions of diphtheria toxin fragment A.
    Zhao JM; London E
    J Biol Chem; 1988 Oct; 263(30):15369-77. PubMed ID: 3170586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion.
    Paliwal R; London E
    Biochemistry; 1996 Feb; 35(7):2374-9. PubMed ID: 8652579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: effect of salt.
    Blewitt MG; Chao JM; McKeever B; Sarma R; London E
    Biochem Biophys Res Commun; 1984 Apr; 120(1):286-90. PubMed ID: 6712698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the Diphtheria Toxin at Acidic pH: Implications for the Conformational Switching of the Translocation Domain.
    Rodnin MV; Kashipathy MM; Kyrychenko A; Battaile KP; Lovell S; Ladokhin AS
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33171806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin.
    Wang Y; Kachel K; Pablo L; London E
    Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes.
    Hu VW; Holmes RK
    J Biol Chem; 1984 Oct; 259(19):12226-33. PubMed ID: 6480607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies.
    Zhan H; Choe S; Huynh PD; Finkelstein A; Eisenberg D; Collier RJ
    Biochemistry; 1994 Sep; 33(37):11254-63. PubMed ID: 7537085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation.
    Jiang JX; Abrams FS; London E
    Biochemistry; 1991 Apr; 30(16):3857-64. PubMed ID: 1850289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunochemical analysis shows all three domains of diphtheria toxin penetrate across model membranes.
    Tortorella D; Sesardic D; Dawes CS; London E
    J Biol Chem; 1995 Nov; 270(46):27446-52. PubMed ID: 7499201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of diphtheria toxin membrane insertion and translocation: calorimetric characterization of the acid pH induced transition.
    Ramsay G; Montgomery D; Berger D; Freire E
    Biochemistry; 1989 Jan; 28(2):529-33. PubMed ID: 2713329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial hybrid protein containing a toxic protein fragment and a cell membrane receptor-binding moiety in a disulfide conjugate. II. Biochemical and biologic properties of diphtheria toxin fragment A-S-S-human placental lactogen.
    Chang TM; Dazord A; Neville DM
    J Biol Chem; 1977 Feb; 252(4):1515-22. PubMed ID: 190237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of diphtheria toxin with model membranes.
    Chung LA; London E
    Biochemistry; 1988 Feb; 27(4):1245-53. PubMed ID: 3365385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-mediated reduction of the interfragment disulfide in nicked diphtheria toxin. A new system to study toxin entry at low pH.
    Moskaug JO; Sandvig K; Olsnes S
    J Biol Chem; 1987 Jul; 262(21):10339-45. PubMed ID: 3112141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH and ionic strength on the cytolytic toxin Cyt1A: a fluorescence spectroscopy study.
    Manceva SD; Pusztai-Carey M; Butko P
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):123-30. PubMed ID: 15158719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior.
    Hammond K; Caputo GA; London E
    Biochemistry; 2002 Mar; 41(9):3243-53. PubMed ID: 11863463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation and stability of thiol-modified bovine beta-lactoglobulin.
    Sakai K; Sakurai K; Sakai M; Hoshino M; Goto Y
    Protein Sci; 2000 Sep; 9(9):1719-29. PubMed ID: 11045618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histidine-21 is involved in diphtheria toxin NAD+ binding.
    Papini E; Schiavo G; Rappuoli R; Montecucco C
    Toxicon; 1990; 28(6):631-5. PubMed ID: 2402759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.