These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4074708)

  • 41. Interaction of the isolated transmembrane domain of diphtheria toxin with membranes.
    Zhan H; Oh KJ; Shin YK; Hubbell WL; Collier RJ
    Biochemistry; 1995 Apr; 34(14):4856-63. PubMed ID: 7718592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):55-63. PubMed ID: 39067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of temperature on tryptophan fluorescence of beta-lactoglobulin B.
    Mills OE
    Biochim Biophys Acta; 1976 Jun; 434(2):324-32. PubMed ID: 8097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines.
    Kurnikov IV; Kyrychenko A; Flores-Canales JC; Rodnin MV; Simakov N; Vargas-Uribe M; Posokhov YO; Kurnikova M; Ladokhin AS
    J Mol Biol; 2013 Aug; 425(15):2752-64. PubMed ID: 23648837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin.
    Ren J; Sharpe JC; Collier RJ; London E
    Biochemistry; 1999 Jan; 38(3):976-84. PubMed ID: 9893993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conformational and molecular responses to pH variation of the purified membrane adenosine triphosphatase of Micrococcus lysodeikticus.
    Nieto M; Muñoz E; Carreira J; Andreu JM
    Biochim Biophys Acta; 1975 Dec; 413(3):394-414. PubMed ID: 91
    [TBL] [Abstract][Full Text] [Related]  

  • 47. pH-induced transitions in cholera toxin conformation: a fluorescence study.
    De Wolf MJ; Van Dessel GA; Lagrou AR; Hilderson HJ; Dierick WS
    Biochemistry; 1987 Jun; 26(13):3799-806. PubMed ID: 3651415
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Features of the structure of catalytic subunits of toxins, inhibiting protein synthesis. I. The effect of pH and interaction with the B-chain of ricin].
    Bushueva TL; Uroshevich OI; Maĭsurian NA; Mirimanova NV; Tonevitskiĭ AG
    Mol Biol (Mosk); 1991; 25(2):422-30. PubMed ID: 1881395
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational changes in the bilirubin-human serum albumin complex at extreme alkaline pH.
    Honoré B; Frandsen PC
    Biochem J; 1986 Jun; 236(2):365-9. PubMed ID: 3019314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavior of the N-terminal helices of the diphtheria toxin T domain during the successive steps of membrane interaction.
    Montagner C; Perier A; Pichard S; Vernier G; Ménez A; Gillet D; Forge V; Chenal A
    Biochemistry; 2007 Feb; 46(7):1878-87. PubMed ID: 17249698
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The pH-Dependent Trigger in Diphtheria Toxin T Domain Comes with a Safety Latch.
    Rodnin MV; Li J; Gross ML; Ladokhin AS
    Biophys J; 2016 Nov; 111(9):1946-1953. PubMed ID: 27806276
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Requirement of a transmembrane pH gradient for the entry of diphtheria toxin into cells at low pH.
    Sandvig K; Tønnessen TI; Sand O; Olsnes S
    J Biol Chem; 1986 Sep; 261(25):11639-44. PubMed ID: 3745160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement.
    Draper RK; Simon MI
    J Cell Biol; 1980 Dec; 87(3 Pt 1):849-54. PubMed ID: 7462326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution and membrane-bound chaperone activity of the diphtheria toxin translocation domain towards the catalytic domain.
    Chassaing A; Pichard S; Araye-Guet A; Barbier J; Forge V; Gillet D
    FEBS J; 2011 Dec; 278(23):4516-25. PubMed ID: 21332941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biophysical properties of diphtheria toxin fragment B in correlation to its binding ability to eukaryotic cell membranes [proceedings].
    Lambotte P; Falmagne P; Capiau C; Ruysschaert JM; Dirkx J
    Arch Int Physiol Biochim; 1979 Dec; 87(5):1041-2. PubMed ID: 94807
    [No Abstract]   [Full Text] [Related]  

  • 56. Lipid interaction of diphtheria toxin and mutants. A study with phospholipid and protein monolayers.
    Demel R; Schiavo G; de Kruijff B; Montecucco C
    Eur J Biochem; 1991 Apr; 197(2):481-6. PubMed ID: 2026170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: possible involvement of the P site and the NAD+ binding site.
    Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biosci Rep; 1985 Mar; 5(3):243-50. PubMed ID: 4016224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. pH dependent insertion of a diphtheria toxin B fragment peptide into the lipid membrane: a conformational analysis.
    Brasseur R; Cabiaux V; Falmagne P; Ruysschaert JM
    Biochem Biophys Res Commun; 1986 Apr; 136(1):160-8. PubMed ID: 3754745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reversible refolding of the diphtheria toxin T-domain on lipid membranes.
    Ladokhin AS; Legmann R; Collier RJ; White SH
    Biochemistry; 2004 Jun; 43(23):7451-8. PubMed ID: 15182188
    [TBL] [Abstract][Full Text] [Related]  

  • 60. pH-induced structural transitions of caseins.
    Chakraborty A; Basak S
    J Photochem Photobiol B; 2007 Jun; 87(3):191-9. PubMed ID: 17537643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.