BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 4074729)

  • 1. Interflavin oxidation-reduction reactions between pig kidney general acyl-CoA dehydrogenase and electron-transferring flavoprotein.
    Gorelick RJ; Schopfer LM; Ballou DP; Massey V; Thorpe C
    Biochemistry; 1985 Nov; 24(24):6830-9. PubMed ID: 4074729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein.
    Dwyer TM; Zhang L; Muller M; Marrugo F; Frerman F
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):139-52. PubMed ID: 10446367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of beta-oxidation. Reduction potentials of general fatty acyl-CoA dehydrogenase, electron transfer flavoprotein, and fatty acyl-CoA substrates.
    Gustafson WG; Feinberg BA; McFarland JT
    J Biol Chem; 1986 Jun; 261(17):7733-41. PubMed ID: 3711105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-transferring flavoprotein from pig kidney: flavin analogue studies.
    Gorelick RJ; Thorpe C
    Biochemistry; 1986 Nov; 25(22):7092-8. PubMed ID: 3801410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of electron-transfer flavoprotein and electron-transfer flavoprotein: ubiquinone oxidoreductase.
    Ramsay RR; Steenkamp DJ; Husain M
    Biochem J; 1987 Feb; 241(3):883-92. PubMed ID: 3593226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential cross-linking of the small subunit of the electron-transfer flavoprotein to general acyl-CoA dehydrogenase.
    Steenkamp DJ
    Biochem J; 1987 Apr; 243(2):519-24. PubMed ID: 3115254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of oxidation-reduction state on the kinetic stability of pig kidney general acyl-CoA dehydrogenase and other flavoproteins.
    Madden M; Lau SM; Thorpe C
    Biochem J; 1984 Dec; 224(2):577-80. PubMed ID: 6517865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase.
    Beckmann JD; Frerman FE
    Biochemistry; 1985 Jul; 24(15):3922-5. PubMed ID: 2996585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternate electron acceptors for medium-chain acyl-CoA dehydrogenase: use of ferricenium salts.
    Lehman TC; Thorpe C
    Biochemistry; 1990 Nov; 29(47):10594-602. PubMed ID: 2271671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new form of mammalian electron-transferring flavoprotein.
    Lehman TC; Thorpe C
    Arch Biochem Biophys; 1992 Feb; 292(2):594-9. PubMed ID: 1731621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial purification and characterization of glutaryl-coenzyme A dehydrogenase, electron transfer flavoprotein, and electron transfer flavoprotein-Q oxidoreductase from Paracoccus denitrificans.
    Husain M; Steenkamp DJ
    J Bacteriol; 1985 Aug; 163(2):709-15. PubMed ID: 2991202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediates during the fatty acyl CoA dehydrogenase catalyzed reduction of electron transfer flavoprotein (ETF) by fatty acyl CoA esters.
    Reinsch JW; Feinberg BA; McFarland JT
    Biochem Biophys Res Commun; 1980 Jun; 94(4):1409-16. PubMed ID: 7396968
    [No Abstract]   [Full Text] [Related]  

  • 14. The reaction of trimethylamine dehydrogenase with electron transferring flavoprotein.
    Huang L; Rohlfs RJ; Hille R
    J Biol Chem; 1995 Oct; 270(41):23958-65. PubMed ID: 7592591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive half-reaction of medium-chain fatty acyl-CoA dehydrogenase utilizing octanoyl-CoA/octenoyl-CoA as a physiological substrate/product pair: similarity in the microscopic pathways of octanoyl-CoA oxidation and octenoyl-CoA binding.
    Kumar NR; Srivastava DK
    Biochemistry; 1994 Jul; 33(29):8833-41. PubMed ID: 8038175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on electron transfer from general acyl-CoA dehydrogenase to electron transfer flavoprotein.
    Hall CL; Lambeth JD
    J Biol Chem; 1980 Apr; 255(8):3591-5. PubMed ID: 7364759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria. Mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts.
    Amendt BA; Rhead WJ
    J Clin Invest; 1986 Jul; 78(1):205-13. PubMed ID: 3722376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation-reduction of general acyl-CoA dehydrogenase by the butyryl-CoA/crotonyl-CoA couple. A new investigation of the rapid reaction kinetics.
    Schopfer LM; Massey V; Ghisla S; Thorpe C
    Biochemistry; 1988 Aug; 27(17):6599-611. PubMed ID: 3219356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alphaT244M mutation affects the redox, kinetic, and in vitro folding properties of Paracoccus denitrificans electron transfer flavoprotein.
    Griffin KJ; Dwyer TM; Manning MC; Meyer JD; Carpenter JF; Frerman FE
    Biochemistry; 1997 Apr; 36(14):4194-202. PubMed ID: 9100014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of two-electron reduced medium chain acyl-CoA dehydrogenase by 2-octynoyl-CoA.
    Zhou JZ; Thorpe C
    Arch Biochem Biophys; 1989 Jun; 271(2):261-9. PubMed ID: 2567147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.