These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 4074770)
1. A new algorithm for voltage clamp by iteration: a learning control of a nonlinear neuronal system. Kawato M; Etoh M; Oda Y; Tsukahara N Biol Cybern; 1985; 53(1):57-66. PubMed ID: 4074770 [TBL] [Abstract][Full Text] [Related]
2. Single electrode voltage clamp by iteration. Park MR; Leber W; Klee MR J Neurosci Methods; 1981 Feb; 3(3):271-83. PubMed ID: 7218855 [TBL] [Abstract][Full Text] [Related]
3. Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. Bar-Yehuda D; Korngreen A J Neurophysiol; 2008 Mar; 99(3):1127-36. PubMed ID: 18184885 [TBL] [Abstract][Full Text] [Related]
4. Compensation for resistance in series with excitable membranes. Moore JW; Hines M; Harris EM Biophys J; 1984 Oct; 46(4):507-14. PubMed ID: 6498268 [TBL] [Abstract][Full Text] [Related]
5. Synaptic currents at interpositorubral and corticorubral excitatory synapses measured by a new iterative single-electrode voltage-clamp method. Murakami F; Etoh M; Kawato M; Oda Y; Tsukahara N Neurosci Res; 1986 Sep; 3(6):590-605. PubMed ID: 3022209 [TBL] [Abstract][Full Text] [Related]
6. Design of a single electrode voltage clamp. Merickel M J Neurosci Methods; 1980 Feb; 2(1):87-96. PubMed ID: 7329092 [TBL] [Abstract][Full Text] [Related]
8. Modeling the electrical behavior of anatomically complex neurons using a network analysis program: excitable membrane. Bunow B; Segev I; Fleshman JW Biol Cybern; 1985; 53(1):41-56. PubMed ID: 3841014 [TBL] [Abstract][Full Text] [Related]
9. Physical-chemical approach to the transient change in Na ion conductivity of excitable membranes. Rawlings PK; Neumann E Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4492-6. PubMed ID: 188053 [TBL] [Abstract][Full Text] [Related]
10. A- and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics. Schild JH; Clark JW; Hay M; Mendelowitz D; Andresen MC; Kunze DL J Neurophysiol; 1994 Jun; 71(6):2338-58. PubMed ID: 7523613 [TBL] [Abstract][Full Text] [Related]
11. Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. Spruston N; Jaffe DB; Williams SH; Johnston D J Neurophysiol; 1993 Aug; 70(2):781-802. PubMed ID: 8410172 [TBL] [Abstract][Full Text] [Related]
12. Numerical method for correcting the series resistance error in voltage clamp experiments. Palti Y; Cohen-Armon M Isr J Med Sci; 1982 Jan; 18(1):19-24. PubMed ID: 7068341 [TBL] [Abstract][Full Text] [Related]
13. Sinusoidal voltage clamp of the Hodgkin-Huxley model. FitzHugh R Biophys J; 1983 Apr; 42(1):11-6. PubMed ID: 6838978 [TBL] [Abstract][Full Text] [Related]
14. A new phenomenology for squid axon voltage-clamp currents. Arndt RA; Roper LD J Theor Biol; 1974 Dec; 48(2):373-87. PubMed ID: 4459591 [No Abstract] [Full Text] [Related]
15. Response of delayed (K+) channels to the time-dependent clamping function in squid giant axon. I. Ascending ramps. Starzak ME; Senft JP; Starzak RJ Physiol Chem Phys; 1977; 9(6):513-32. PubMed ID: 614592 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear cable equations for axons. I. Computations and experiments with internal current injection. Arispe NJ; Moore JW J Gen Physiol; 1979 Jun; 73(6):725-35. PubMed ID: 479812 [TBL] [Abstract][Full Text] [Related]
17. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes. Gómez-González JF; Destexhe A; Bal T J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226 [TBL] [Abstract][Full Text] [Related]
18. Analysis of certain errors in squid axon voltage clamp measurements. TAYLOR RE; MOORE JW; COLE KS Biophys J; 1960 Nov; 1(2):161-202. PubMed ID: 13775643 [TBL] [Abstract][Full Text] [Related]
19. A physical model of nerve axon. II: Action potential and excitation currents. Voltage-clamp studies of chemical driving forces of Na+ and K+ in squid giant axon. Chang DC Physiol Chem Phys; 1979; 11(3):263-88. PubMed ID: 531110 [TBL] [Abstract][Full Text] [Related]
20. Direct and rapid description of the individual ionic currents of squid axon membrane by ramp potential control. Fishman HM Biophys J; 1970 Sep; 10(9):799-817. PubMed ID: 5496903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]