BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4075101)

  • 1. Differential distribution of intermembranous particles in the plasmalemma of the migrating cerebellar granule cells.
    Garcia-Segura LM; Rakic P
    Brain Res; 1985 Nov; 355(1):145-9. PubMed ID: 4075101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface and membrane morphology of Bergmann glial cells and their topographic relationships in the cerebellar molecular layer.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Jan; 22(1):123-34. PubMed ID: 2311096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 6-Hydroxydopamine induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. II. Differentiation of granule cells: a scanning and transmission electron microscopic study.
    Mangold U; Sievers J; Berry M
    J Comp Neurol; 1984 Aug; 227(2):267-84. PubMed ID: 6432859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-fracture organization of chromatin and cytoplasm in neurons and astroglia of rat cerebellar cortex.
    Lafarga M; Berciano MT; Garcia-Segura LM
    J Neurocytol; 1991 Jul; 20(7):533-51. PubMed ID: 1919602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlative microscopy of cerebellar Bergmann glial cells.
    Castejón OJ; Dailey ME; Apkarian RP; Castejón HV
    J Submicrosc Cytol Pathol; 2002 Apr; 34(2):131-42. PubMed ID: 12117273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal migration independent of glial guidance: light and electron microscopic studies in the cerebellar cortex of neonatal rats.
    Zagon IS; McLaughlin PJ; Rogers WE
    Acta Anat (Basel); 1985; 122(2):77-86. PubMed ID: 4013643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar external granule cells are attached to the basal lamina from the onset of migration up to the end of their proliferative activity.
    Hausmann B; Sievers J
    J Comp Neurol; 1985 Nov; 241(1):50-62. PubMed ID: 4056112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular migration in the postnatal rat cerebellar cortex: confocal-infrared microscopy and the rapid Golgi method.
    Liesi P; Akinshola E; Matsuba K; Lange K; Morest K
    J Neurosci Res; 2003 May; 72(3):290-302. PubMed ID: 12692896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-fracture scanning electron microscopy and comparative freeze-etching study of parallel fiber-Purkinje spine synapses of vertebrate cerebellar cortex.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Apr; 22(2):281-95. PubMed ID: 2337890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An SEM examination of granule cell migration in the mouse cerebellum.
    Grovas AC; O'Shea KS
    J Neurosci Res; 1984; 12(1):1-14. PubMed ID: 6481817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral distribution of intramembrane particles in Purkinje and granule cells of the rat cerebellar cortex.
    Garcia-Segura LM; Perrelet A
    Neurosci Lett; 1984 Jul; 48(1):37-42. PubMed ID: 6089059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deposition and role of thrombospondin in the histogenesis of the cerebellar cortex.
    O'Shea KS; Rheinheimer JS; Dixit VM
    J Cell Biol; 1990 Apr; 110(4):1275-83. PubMed ID: 2182649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in the fibronectin type III repeats.
    Husmann K; Faissner A; Schachner M
    J Cell Biol; 1992 Mar; 116(6):1475-86. PubMed ID: 1371773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct modes of neuronal migration in different domains of developing cerebellar cortex.
    Komuro H; Rakic P
    J Neurosci; 1998 Feb; 18(4):1478-90. PubMed ID: 9454856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma-radiation produces abnormal Bergmann fibers and ectopic granule cells in mouse cerebellar cortex.
    Inouye M; Hayasaka S; Funahashi A; Yamamura H
    J Radiat Res; 1992 Dec; 33(4):275-81. PubMed ID: 1293297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filopodia and growth cones in the vertically migrating granule cells of the postnatal mouse cerebellum.
    Ono K; Shokunbi T; Nagata I; Tokunaga A; Yasui Y; Nakatsuji N
    Exp Brain Res; 1997 Oct; 117(1):17-29. PubMed ID: 9386001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the cerebellar cortex viewed by scanning electron microscopy.
    Reese BF; Landis DM; Reese TS
    Neuroscience; 1985 Jan; 14(1):133-46. PubMed ID: 3974876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of nuclear pores and chromatin organization in neurons and glial cells of the rat cerebellar cortex.
    Garcia-Segura LM; Lafarga M; Berciano MT; Hernandez P; Andres MA
    J Comp Neurol; 1989 Dec; 290(3):440-50. PubMed ID: 2592622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental scanning electron microscopic study of human cerebellar cortex using the t-butyl alcohol freeze-drying device.
    Hojo T
    Scanning Microsc; 1994; 8(2):303-13. PubMed ID: 7701301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal laser scanning, conventional scanning and transmission electron microscopy of vertebrate cerebellar granule cells.
    Castejón OJ; Castejón HV; Apkarian RP
    Biocell; 2001 Dec; 25(3):235-55. PubMed ID: 11813540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.