These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 4075159)
1. Microinjection of morphine into nucleus reticularis paragigantocellularis of the rat: suppression of noxious-evoked activity of nucleus raphe magnus neurons. Heinricher MM; Rosenfeld JP Brain Res; 1985 Dec; 359(1-2):388-91. PubMed ID: 4075159 [TBL] [Abstract][Full Text] [Related]
2. Microinjection of morphine into nucleus reticularis paragigantocellularis of the rat suppresses spontaneous activity of nucleus raphe magnus neurons. Heinricher MM; Rosenfeld JP Brain Res; 1983 Aug; 272(2):382-6. PubMed ID: 6616214 [TBL] [Abstract][Full Text] [Related]
3. The response of individual nucleus raphe magnus neurons to microinjections of met-enkephalin at midbrain and at bulbar loci: evidence for midbrain-bulbar convergence on individual raphe neurons. Rosenfeld JP Int J Neurosci; 1987 Apr; 33(3-4):165-73. PubMed ID: 3596947 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia. Young EG; Watkins LR; Mayer DJ Brain Res; 1984 Jan; 290(1):119-29. PubMed ID: 6692127 [TBL] [Abstract][Full Text] [Related]
5. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat. Jensen TS; Yaksh TL Brain Res; 1986 Jan; 363(1):99-113. PubMed ID: 3004644 [TBL] [Abstract][Full Text] [Related]
6. Occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons. Saiepour MH; Semnanian S; Fathollahi Y Eur J Pharmacol; 2001 Jan; 411(1-2):85-92. PubMed ID: 11137862 [TBL] [Abstract][Full Text] [Related]
7. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome. de Oliveira RC; de Oliveira R; Ferreira CM; Coimbra NC Exp Neurol; 2006 Sep; 201(1):144-53. PubMed ID: 16842781 [TBL] [Abstract][Full Text] [Related]
8. A comparison of the sites at which pentazocine and morphine act to produce analgesia. Llewelyn MB; Azami J; Gibbs M; Roberts MHT Pain; 1983 Aug; 16(4):313-331. PubMed ID: 6622044 [TBL] [Abstract][Full Text] [Related]
9. Role of glutamatergic receptors located in the nucleus raphe magnus on antinociceptive effect of morphine microinjected into the nucleus cuneiformis of rat. Haghparast A; Soltani-Hekmat A; Khani A; Komaki A Neurosci Lett; 2007 Oct; 427(1):44-9. PubMed ID: 17920194 [TBL] [Abstract][Full Text] [Related]
10. Responses of neurons of the nucleus raphe magnus to noxious stimuli. Guilbaud G; Peschanski M; Gautron M; Binder D Neurosci Lett; 1980 Apr; 17(1-2):149-54. PubMed ID: 7052457 [TBL] [Abstract][Full Text] [Related]
11. Brainstem mechanisms of antinociception. Effects of electrical stimulation and injection of morphine into the nucleus raphe magnus. Llewelyn MB; Azami J; Roberts MH Neuropharmacology; 1986 Jul; 25(7):727-35. PubMed ID: 3489199 [TBL] [Abstract][Full Text] [Related]
12. Analgesic effects of serotonin microinjection into nucleus raphe magnus and nucleus raphe dorsalis evaluated by the monosodium urate (MSU) tonic pain model in the rat. Inase M; Nakahama H; Otsuki T; Fang JZ Brain Res; 1987 Nov; 426(2):205-11. PubMed ID: 3690323 [TBL] [Abstract][Full Text] [Related]
13. The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Azami J; Llewelyn MB; Roberts MHT Pain; 1982 Mar; 12(3):229-246. PubMed ID: 7078984 [TBL] [Abstract][Full Text] [Related]
15. Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats. Haghparast A; Ordikhani-Seyedlar M; Ziaei M Neurosci Lett; 2008 Jun; 438(3):351-5. PubMed ID: 18486337 [TBL] [Abstract][Full Text] [Related]
16. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray. Urban MO; Smith DJ Brain Res; 1994 Jul; 652(1):9-16. PubMed ID: 7953726 [TBL] [Abstract][Full Text] [Related]
17. Effects of 5-hydroxytryptamine applied into nucleus raphe magnus on nociceptive thresholds and neuronal firing rate. Llewelyn MB; Azami J; Roberts MH Brain Res; 1983 Jan; 258(1):59-68. PubMed ID: 24010164 [TBL] [Abstract][Full Text] [Related]
18. Distinct effect of orphanin FQ in nucleus raphe magnus and nucleus reticularis gigantocellularis on the rat tail flick reflex. Yang Z; Zhang Y; Wu G Neurosci Lett; 2001 Jun; 306(1-2):69-72. PubMed ID: 11403960 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation. Jones SL; Gebhart GF Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046 [TBL] [Abstract][Full Text] [Related]
20. GABAergic modulation of nociceptive threshold: effects of THIP and bicuculline microinjected in the ventral medulla of the rat. Drower EJ; Hammond DL Brain Res; 1988 May; 450(1-2):316-24. PubMed ID: 3401715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]