These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 4075233)

  • 1. 1H nuclear magnetic resonance studies of ytterbium-substituted porcine intestinal calcium-binding protein.
    Shelling JG; Hofmann T; Sykes BD
    Can J Biochem Cell Biol; 1985 Sep; 63(9):992-7. PubMed ID: 4075233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear magnetic resonance determination of metal-protn distances in the EF site of carp parvalbumin using the susceptibility contribution to the line broadening of lanthanide-shifted resonances.
    Lee L; Sykes BD
    Biochemistry; 1980 Jul; 19(14):3208-14. PubMed ID: 7407042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biophys J; 1980 Oct; 32(1):193-210. PubMed ID: 7248448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biochemistry; 1983 Sep; 22(19):4366-73. PubMed ID: 6626506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin.
    Lee L; Sykes BD
    Biochemistry; 1981 Mar; 20(5):1156-62. PubMed ID: 7225322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton nuclear magnetic resonance studies of porcine intestinal calcium binding protein.
    Shelling JG; Sykes BD; O'Neil JD; Hofmann T
    Biochemistry; 1983 May; 22(11):2649-54. PubMed ID: 6871152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding.
    Carlström G; Chazin WJ
    J Mol Biol; 1993 May; 231(2):415-30. PubMed ID: 8389885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy.
    Heintz D; Kany H; Kalbitzer HR
    Biochemistry; 1996 Oct; 35(39):12686-93. PubMed ID: 8841112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanide ions bind specifically to an added "EF-hand" and orient a membrane protein in micelles for solution NMR spectroscopy.
    Ma C; Opella SJ
    J Magn Reson; 2000 Oct; 146(2):381-4. PubMed ID: 11001856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein binding to lanthanide(III) complexes can reduce the water exchange rate at the lanthanide.
    Zech SG; Eldredge HB; Lowe MP; Caravan P
    Inorg Chem; 2007 Apr; 46(9):3576-84. PubMed ID: 17425306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H nuclear magnetic resonance studies of hen lysozyme-N-acetylglucosamine oligosaccharide complexes in solution. Application of chemical shifts for the comparison of conformational changes in solution and in the crystal.
    Lumb KJ; Cheetham JC; Dobson CM
    J Mol Biol; 1994 Jan; 235(3):1072-87. PubMed ID: 8289309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evidence for conformational heterogeneity in the native state.
    Li H; Frieden C
    Biochemistry; 2005 Feb; 44(7):2369-77. PubMed ID: 15709749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexation of ytterbium to human transferrin and its uptake by K562 cells.
    Du XL; Zhang TL; Yuan L; Zhao YY; Li RC; Wang K; Yan SC; Zhang L; Sun H; Qian ZM
    Eur J Biochem; 2002 Dec; 269(24):6082-90. PubMed ID: 12473103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optical stopped-flow and 1H and 113Cd nuclear magnetic resonance study of the kinetics and stoichiometry of the interaction of the lanthanide Yb3+ with carp parvalbumin.
    Corson DC; Lee L; McQuaid GA; Sykes BD
    Can J Biochem Cell Biol; 1983 Aug; 61(8):860-7. PubMed ID: 6627097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the Ln3+-angiotensin II complex. A 13C nmr study of the binding of Yb3+ to angiotensin II.
    Lenkinski RE; Stephens RL
    J Inorg Biochem; 1983 Apr; 18(2):175-80. PubMed ID: 6854317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H nuclear magnetic resonance study of the two calcium-binding sites of porcine intestinal calcium-binding protein.
    Shelling JG; Sykes BD
    J Biol Chem; 1985 Jul; 260(14):8342-7. PubMed ID: 3924913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the calcium binding site and a novel ytterbium site in blood coagulation factor XIII by x-ray crystallography.
    Fox BA; Yee VC; Pedersen LC; Le Trong I; Bishop PD; Stenkamp RE; Teller DC
    J Biol Chem; 1999 Feb; 274(8):4917-23. PubMed ID: 9988734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and luminal forms of rat intestinal calcium-binding protein as studied by counter ion electrophoresis.
    Ueng TH; Bronner F
    Arch Biochem Biophys; 1979 Oct; 197(1):205-17. PubMed ID: 543716
    [No Abstract]   [Full Text] [Related]  

  • 19. Magnetic field and temperature induced line broadening in the hyperfine-shifted proton resonances of myoglobin and hemoglobin.
    Johnson ME; Fung LW; Ho C
    J Am Chem Soc; 1977 Feb; 99(4):1245-50. PubMed ID: 833399
    [No Abstract]   [Full Text] [Related]  

  • 20. Lanthanide ion-induced isotropic shifts and broadening for nuclear magnetic resonance structural analysis of model membranes.
    Andrews SB; Faller JW; Gilliam JM; Barrnett RJ
    Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1814-8. PubMed ID: 4515942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.