These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 4075440)
1. Evidence that covalent binding of metabolically activated phenol to microsomal proteins is caused by oxidised products of hydroquinone and catechol. Wallin H; Melin P; Schelin C; Jergil B Chem Biol Interact; 1985 Nov; 55(3):335-46. PubMed ID: 4075440 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Sawahata T; Neal RA Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203 [TBL] [Abstract][Full Text] [Related]
3. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone. Snyder R; Chepiga T; Yang CS; Thomas H; Platt K; Oesch F Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999 [TBL] [Abstract][Full Text] [Related]
4. Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity. Subrahmanyam VV; Doane-Setzer P; Steinmetz KL; Ross D; Smith MT Toxicology; 1990 May; 62(1):107-16. PubMed ID: 2343455 [TBL] [Abstract][Full Text] [Related]
5. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Smart RC; Zannoni VG Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127 [TBL] [Abstract][Full Text] [Related]
6. Benzene and phenol metabolism by mouse and rat liver microsomes. Schlosser PM; Bond JA; Medinsky MA Carcinogenesis; 1993 Dec; 14(12):2477-86. PubMed ID: 8269615 [TBL] [Abstract][Full Text] [Related]
7. Activation of microsomal glutathione transferase activity by reactive intermediates formed during the metabolism of phenol. Wallin H; Morgenstern R Chem Biol Interact; 1990; 75(2):185-99. PubMed ID: 2369785 [TBL] [Abstract][Full Text] [Related]
8. The oxidation of tetrachloro-1,4-hydroquinone by microsomes and purified cytochrome P-450b. Implications for covalent binding to protein and involvement of reactive oxygen species. van Ommen B; Voncken JW; Müller F; van Bladeren PJ Chem Biol Interact; 1988; 65(3):247-59. PubMed ID: 3132330 [TBL] [Abstract][Full Text] [Related]
9. Induction of sister-chromatid exchanges in human lymphocytes by microsomal activation of benzene metabolites. Morimoto K; Wolff S; Koizumi A Mutat Res; 1983 Mar; 119(3):355-60. PubMed ID: 6828070 [TBL] [Abstract][Full Text] [Related]
10. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450. Marinello AJ; Bansal SK; Paul B; Koser PL; Love J; Struck RF; Gurtoo HL Cancer Res; 1984 Oct; 44(10):4615-21. PubMed ID: 6380709 [TBL] [Abstract][Full Text] [Related]
11. Species and strain differences in the hepatic cytochrome P450-mediated biotransformation of 1,4-dichlorobenzene. Hissink AM; Oudshoorn MJ; Van Ommen B; Van Bladeren PJ Toxicol Appl Pharmacol; 1997 Jul; 145(1):1-9. PubMed ID: 9221818 [TBL] [Abstract][Full Text] [Related]
12. The metabolism of benzene and phenol by a reconstituted purified phenobarbital-induced rat liver mixed function oxidase system. Griffiths JC; Kalf GF; Snyder R Adv Exp Med Biol; 1986; 197():213-22. PubMed ID: 3094336 [No Abstract] [Full Text] [Related]
13. In vitro conjugation of benzene metabolites by human liver: potential influence of interindividual variability on benzene toxicity. Seaton MJ; Schlosser P; Medinsky MA Carcinogenesis; 1995 Jul; 16(7):1519-27. PubMed ID: 7614685 [TBL] [Abstract][Full Text] [Related]
14. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat, and human. Brodfuehrer JI; Chapman DE; Wilke TJ; Powis G Drug Metab Dispos; 1990; 18(1):20-7. PubMed ID: 1970773 [TBL] [Abstract][Full Text] [Related]
15. Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro. Rushmore T; Snyder R; Kalf G Chem Biol Interact; 1984 Apr; 49(1-2):133-54. PubMed ID: 6202430 [TBL] [Abstract][Full Text] [Related]
16. Effect of phenol and catechol on the kinetics of human myeloperoxidase-dependent hydroquinone metabolism. Subrahmanyam VV; Kolachana P; Smith MT Adv Exp Med Biol; 1991; 283():377-81. PubMed ID: 1648866 [No Abstract] [Full Text] [Related]
17. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent binding to hepatic proteins. Dehal SS; Kupfer D Drug Metab Dispos; 1999 Jun; 27(6):681-8. PubMed ID: 10348797 [TBL] [Abstract][Full Text] [Related]
18. Effect of hyperthyroidism on the in vitro metabolism and covalent binding of 1,1-dichloroethylene in rat liver microsomes. Gunasena GH; Kanz MF J Toxicol Environ Health; 1997 Oct; 52(2):169-88. PubMed ID: 9310148 [TBL] [Abstract][Full Text] [Related]
19. Rate and capacity of hepatic microsomal ring-hydroxylation of phenol to hydroquinone and catechol in rainbow trout (Oncorhynchus mykiss). Kolanczyk RC; Schmieder PK Toxicology; 2002 Jul; 176(1-2):77-90. PubMed ID: 12062932 [TBL] [Abstract][Full Text] [Related]
20. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Gut I; Nedelcheva V; Soucek P; Stopka P; Tichavská B Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1211-8. PubMed ID: 9118895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]