BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4075700)

  • 1. Cholesterol metabolism: regulatory effects of the vagus in the normal and diabetic animal.
    Scott LM; Tomkin GH
    Diabetes Res; 1985 Nov; 2(6):313-7. PubMed ID: 4075700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol.
    Reihnér E; Rudling M; Ståhlberg D; Berglund L; Ewerth S; Björkhem I; Einarsson K; Angelin B
    N Engl J Med; 1990 Jul; 323(4):224-8. PubMed ID: 2114543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ovarian cholesterol metabolism: control of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase.
    Schuler LA; Toaff ME; Strauss JF
    Endocrinology; 1981 Apr; 108(4):1476-86. PubMed ID: 7472277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HMG-CoA reductase inhibition reverses LCAT and LDL receptor deficiencies and improves HDL in rats with chronic renal failure.
    Liang K; Kim CH; Vaziri ND
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F539-44. PubMed ID: 15507547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HMG-CoA reductase, cholesterol 7alpha-hydroxylase, LCAT, ACAT, LDL receptor, and SRB-1 in hereditary analbuminemia.
    Liang K; Vaziri ND
    Kidney Int; 2003 Jul; 64(1):192-8. PubMed ID: 12787409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in hepatic and intestinal cholesterol regulatory enzymes. The influence of metformin.
    Scott LM; Tomkin GH
    Biochem Pharmacol; 1983 Mar; 32(5):827-30. PubMed ID: 6838630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure.
    Vaziri ND; Liang K
    Am J Physiol Renal Physiol; 2004 Nov; 287(5):F1038-43. PubMed ID: 15280162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HMG-CoA reductase, cholesterol 7alpha-hydroxylase, LDL receptor, SR-B1, and ACAT in diet-induced syndrome X.
    Roberts CK; Liang K; Barnard RJ; Kim CH; Vaziri ND
    Kidney Int; 2004 Oct; 66(4):1503-11. PubMed ID: 15458444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of perturbations in hepatic free and esterified cholesterol pools on bile acid synthesis, cholesterol 7 alpha-hydroxylase, HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase and cytosolic cholesteryl ester hydrolase.
    Grogan WM; Bailey ML; Heuman DM; Vlahcevic ZR
    Lipids; 1991 Nov; 26(11):907-14. PubMed ID: 1805095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic cholesterol metabolism in estrogen-treated men.
    Angelin B; Olivecrona H; Reihnér E; Rudling M; Ståhlberg D; Eriksson M; Ewerth S; Henriksson P; Einarsson K
    Gastroenterology; 1992 Nov; 103(5):1657-63. PubMed ID: 1426886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in cholesterol metabolism in macrosomic offspring of rats with streptozotocin-induced diabetes.
    Merzouk H; Madani S; Boualga A; Prost J; Bouchenak M; Belleville J
    J Lipid Res; 2001 Jul; 42(7):1152-9. PubMed ID: 11441144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of acylcoenzyme A. Cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by lipoproteins in the intestine of parabiont rats.
    Purdy BH; Field FJ
    J Clin Invest; 1984 Aug; 74(2):351-7. PubMed ID: 6746898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acyl-CoA: cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase in carp-liver microsomes: effect of cold acclimation on enzyme activities and on hepatic and plasma lipid composition.
    Teichert T; Wodtke E
    Biochim Biophys Acta; 1992 Dec; 1165(2):211-21. PubMed ID: 1450216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum lipoproteins and cholesterol metabolism in two hypercholesterolaemic rabbit models.
    O'Meara NM; Devery RA; Owens D; Collins PB; Johnson AH; Tomkin GH
    Diabetologia; 1991 Mar; 34(3):139-43. PubMed ID: 1884884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro studies of lipid metabolism in human liver.
    Angelin B; Reihnér E; Rudling M; Ewerth S; Björkhem I; Einarsson K
    Am Heart J; 1987 Feb; 113(2 Pt 2):482-7. PubMed ID: 3812206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis.
    Vaziri ND; Sato T; Liang K
    Kidney Int; 2003 May; 63(5):1756-63. PubMed ID: 12675851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of HMG-CoA reductase inhibition on hepatic expression of key cholesterol-regulatory enzymes and receptors in nephrotic syndrome.
    Vaziri ND; Liang K
    Am J Nephrol; 2004; 24(6):606-13. PubMed ID: 15583480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol metabolism in alloxan-induced diabetic rabbits.
    O'Meara NM; Devery RA; Owens D; Collins PB; Johnson AH; Tomkin GH
    Diabetes; 1990 May; 39(5):626-33. PubMed ID: 2332120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in the metabolism of cholesterol in rat liver microsomes.
    Ståhlberg D; Angelin B; Einarsson K
    Lipids; 1991 May; 26(5):349-52. PubMed ID: 1895880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of an enriched-cholesterol diet on enzymatic cholesterol metabolism during rabbit gestation.
    Montoudis A; Boileau S; Simoneau L; Lafond J
    Life Sci; 2003 Aug; 73(11):1463-77. PubMed ID: 12850506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.