These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 4075810)

  • 1. Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes.
    Mazur P; Cole KW
    Cryobiology; 1985 Dec; 22(6):509-36. PubMed ID: 4075810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of unfrozen fraction, salt concentration, and changes in cell volume in the survival of frozen human erythrocytes.
    Mazur P; Cole KW
    Cryobiology; 1989 Feb; 26(1):1-29. PubMed ID: 2924590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: influence of warming rate.
    Mazur P; Rigopoulos N
    Cryobiology; 1983 Jun; 20(3):274-89. PubMed ID: 6884070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes.
    Mazur P; Rall WF; Rigopoulos N
    Biophys J; 1981 Dec; 36(3):653-75. PubMed ID: 7326328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative influence of unfrozen fraction and salt concentration on the survival of slowly frozen eight-cell mouse embryos.
    Schneider U; Mazur P
    Cryobiology; 1987 Feb; 24(1):17-41. PubMed ID: 3816286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "unfrozen fraction" hypothesis of freezing injury to human erythrocytes: a critical examination of the evidence.
    Pegg DE; Diaper MP
    Cryobiology; 1989 Feb; 26(1):30-43. PubMed ID: 2924591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa.
    Watson PF; Duncan AE
    Cryobiology; 1988 Apr; 25(2):131-42. PubMed ID: 3371058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of injury to slowly frozen erythrocytes.
    Pegg DE; Diaper MP
    Biophys J; 1988 Sep; 54(3):471-88. PubMed ID: 3207835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temperature of intracellular ice formation in mouse oocytes vs. the unfrozen fraction at that temperature.
    Mazur P; Pinn IL; Kleinhans FW
    Cryobiology; 2007 Apr; 54(2):223-33. PubMed ID: 17379206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose.
    Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y
    Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of initial tonicity on freeze/thaw injury to human red cells suspended in solutions of sodium chloride.
    Pegg DE; Diaper MP
    Cryobiology; 1991 Feb; 28(1):18-35. PubMed ID: 2015759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors contributing to inactivation of isolated thylakoid membranes during freezing in the presence of variable amounts of glucose and NaCl.
    Santarius KA; Giersch C
    Biophys J; 1984 Aug; 46(2):129-39. PubMed ID: 6478028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of "solution effects" injury. Equations for calculating phase diagram information for the ternary systems NaCl-dimethylsulfoxide-water and NaCl-glycerol-water.
    Fahy GM
    Biophys J; 1980 Nov; 32(2):837-50. PubMed ID: 7260303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cryogenic preservation of erythrocytes by a droplet freezing technic].
    Sato T
    Hokkaido Igaku Zasshi; 1983 Mar; 58(2):144-53. PubMed ID: 6873868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between intracellular ice formation in oocytes of the mouse and Xenopus and the physical state of the external medium--a revisit.
    Mazur P; Kleinhans FW
    Cryobiology; 2008 Feb; 56(1):22-7. PubMed ID: 18045584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Washed hyperpacked frozen and shelf red blood cells.
    Umlas J
    Transfusion; 1975; 15(2):111-5. PubMed ID: 1118876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive solution for the suspension and storage of deglycerolized red blood cells.
    Ross DG; Heaton WA; Holme S
    Vox Sang; 1989; 56(2):75-9. PubMed ID: 2501934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of freezing damage.
    Pegg DE
    Symp Soc Exp Biol; 1987; 41():363-78. PubMed ID: 3332492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of cooling rate and warming rate on the packing effect in human erythrocytes frozen and thawed in the presence of 2 M glycerol.
    Pegg DE; Diaper MP; Skaer HL; Hunt CJ
    Cryobiology; 1984 Oct; 21(5):491-502. PubMed ID: 6499496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the separate effects of influence factors and their coupled interactions on cryoinjury of human erythrocytes.
    Gao DY; Lin S; Kornblatt JA; Guttman FM
    Cryobiology; 1989 Aug; 26(4):355-68. PubMed ID: 2766783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.