These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 4075844)
1. A back-to-back zig-zag model for higher order chromatin structure. Burgoyne LA Cytobios; 1985; 43(172-173):141-7. PubMed ID: 4075844 [TBL] [Abstract][Full Text] [Related]
2. Chromatin higher-order structure: two-start double superhelix formed by zig-zag shaped nucleosome chain with folded linker DNA. Osipova TN; Karpova EV; Vorob'ev VI J Biomol Struct Dyn; 1990 Aug; 8(1):11-22. PubMed ID: 2275789 [TBL] [Abstract][Full Text] [Related]
4. Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber. Rydberg B; Holley WR; Mian IS; Chatterjee A J Mol Biol; 1998 Nov; 284(1):71-84. PubMed ID: 9811543 [TBL] [Abstract][Full Text] [Related]
5. [Nucleosomes]. Stanchev B; Stanchev V Eksp Med Morfol; 1982; 21(4):172-6. PubMed ID: 6759104 [No Abstract] [Full Text] [Related]
6. Chromatin structure: from nuclei to genes (review). Nicolini C Anticancer Res; 1983; 3(2):63-86. PubMed ID: 6847133 [TBL] [Abstract][Full Text] [Related]
7. Higher-order folding of heterochromatin: protein bridges span the nucleosome arrays. Grigoryev SA Biochem Cell Biol; 2001; 79(3):227-41. PubMed ID: 11467737 [TBL] [Abstract][Full Text] [Related]
8. Electron microscopy of chromatin. Woodcock CL; Horowitz RA Methods; 1997 May; 12(1):84-95. PubMed ID: 9169198 [TBL] [Abstract][Full Text] [Related]
9. Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei. Zentgraf H; Müller U; Franke WW Eur J Cell Biol; 1980 Dec; 23(1):171-88. PubMed ID: 7460964 [TBL] [Abstract][Full Text] [Related]
10. Higher-order structures of chromatin: the elusive 30 nm fiber. Tremethick DJ Cell; 2007 Feb; 128(4):651-4. PubMed ID: 17320503 [TBL] [Abstract][Full Text] [Related]
11. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Schalch T; Duda S; Sargent DF; Richmond TJ Nature; 2005 Jul; 436(7047):138-41. PubMed ID: 16001076 [TBL] [Abstract][Full Text] [Related]
12. Molecular biology. A higher order of silence. Mohd-Sarip A; Verrijzer CP Science; 2004 Nov; 306(5701):1484-5. PubMed ID: 15567842 [No Abstract] [Full Text] [Related]
14. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. Horowitz RA; Agard DA; Sedat JW; Woodcock CL J Cell Biol; 1994 Apr; 125(1):1-10. PubMed ID: 8138564 [TBL] [Abstract][Full Text] [Related]
15. A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. Huynh VA; Robinson PJ; Rhodes D J Mol Biol; 2005 Feb; 345(5):957-68. PubMed ID: 15644197 [TBL] [Abstract][Full Text] [Related]
16. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Carruthers LM; Bednar J; Woodcock CL; Hansen JC Biochemistry; 1998 Oct; 37(42):14776-87. PubMed ID: 9778352 [TBL] [Abstract][Full Text] [Related]
18. High concentration of DNA in condensed chromatin. Daban JR Biochem Cell Biol; 2003 Jun; 81(3):91-9. PubMed ID: 12897842 [TBL] [Abstract][Full Text] [Related]