These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4076187)

  • 21. Azidocalmodulin derivatives. Activation of, and binding to, three target proteins: aorta myosin light-chain kinase, erythrocyte (Mg2+ + Ca2+)-dependent ATPase and cardiac sarcoplasmic-reticulum kinase.
    Molla A; Hincke MT; Katz S; Lazaro R
    Biochem J; 1983 Dec; 215(3):475-82. PubMed ID: 6140918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of effects of calcium X calmodulin-dependent phosphorylation on Ca2+ release from cardiac sarcoplasmic reticulum.
    Kim HW; Kim DH; Ikemoto N; Kranias EG
    Biochim Biophys Acta; 1987 Oct; 903(2):333-40. PubMed ID: 2443173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical modification and fluorescence labeling study of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum using iodoacetamide and its N-substituted derivatives.
    Baba A; Nakamura T; Kawakita M
    J Biochem; 1986 Nov; 100(5):1137-47. PubMed ID: 2950079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dye binding probes of lipid-binding structures. An investigation of 2-p-toluidinylnaphthylene-6-sulfonate binding to human and bovine prothrombin and fragment 1 in the presence and absence of calcium and magnesium ions.
    Sarasua MM; Washington K; Gabriel DA; Bourne C; Kabis CW; Hiskey RG; Koehler KA
    Biochim Biophys Acta; 1983 Jan; 742(1):257-64. PubMed ID: 6687436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin.
    Ohki S; Ikura M; Zhang M
    Biochemistry; 1997 Apr; 36(14):4309-16. PubMed ID: 9100027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum ATPase.
    Orlowski S; Champeil P
    Biochemistry; 1991 Jan; 30(2):352-61. PubMed ID: 1824819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum.
    Xu A; Narayanan N
    Biochem Biophys Res Commun; 1999 Apr; 258(1):66-72. PubMed ID: 10222236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences.
    Bayley PM; Findlay WA; Martin SR
    Protein Sci; 1996 Jul; 5(7):1215-28. PubMed ID: 8819155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Static and kinetic studies of complex formations between calmodulin and mastoparanX.
    Murase T; Iio T
    Biochemistry; 2002 Feb; 41(5):1618-29. PubMed ID: 11814356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Static and kinetic studies of calmodulin and melittin complex.
    Itakura M; Iio T
    J Biochem; 1992 Aug; 112(2):183-91. PubMed ID: 1400261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorimetric studies of calmodulin interactions with antiestrogens.
    Fanidi A; Guichard Y; Fayard JM; Pageaux JF; Laugier C
    Cancer Detect Prev; 1994; 18(6):471-8. PubMed ID: 7867020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal ion and drug binding to proteolytic fragments of calmodulin: proteolytic, cadmium-113, and proton nuclear magnetic resonance studies.
    Thulin E; Andersson A; Drakenberg T; Forsén S; Vogel HJ
    Biochemistry; 1984 Apr; 23(8):1862-70. PubMed ID: 6722127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of the calmodulin-dependent protein kinase system from rabbit skeletal muscle sarcoplasmic reticulum.
    Tuana BS; MacLennan DH
    FEBS Lett; 1988 Aug; 235(1-2):219-23. PubMed ID: 3136035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous distribution of calmodulin- and cAMP-dependent regulation of Ca2+ uptake in cardiac sarcoplasmic reticulum subfractions.
    Gasser J; Paganetti P; Carafoli E; Chiesi M
    Eur J Biochem; 1988 Oct; 176(3):535-41. PubMed ID: 2971537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactions of the sarcoplasmic reticulum calcium adenosinetriphosphatase with adenosine 5'-triphosphate and Ca2+ that are not satisfactorily described by an E1-E2 model.
    Stahl N; Jencks WP
    Biochemistry; 1987 Dec; 26(24):7654-67. PubMed ID: 2962640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum.
    Strasburg GM; Hogan M; Birmachu W; Thomas DD; Louis CF
    J Biol Chem; 1988 Jan; 263(1):542-8. PubMed ID: 2961748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [cAMP, calmodulin-dependent stimulation and stability to proteolysis of Ca 2+ transport in the heart sarcoplasmic reticulum].
    Antipenko AE; Sviderskaia EV; Dizhe GP; Krasnovskaia IE
    Biokhimiia; 1989 Dec; 54(12):2023-9. PubMed ID: 2561265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization, purification, and characterization of the rabbit sarcoplasmic reticulum associated calmodulin-dependent protein kinase.
    Pelosi M; Donella-Deana A
    Biochemistry (Mosc); 2000 Feb; 65(2):259-68. PubMed ID: 10713557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-temperature studies of the sarcoplasmic reticulum calcium pump. Mechanisms of calcium binding.
    Dupont Y
    Biochim Biophys Acta; 1982 May; 688(1):75-87. PubMed ID: 6212082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of calmodulin and its fragments with Ca2+-ATPase and myosin light chain kinase.
    Szyja W; Wrzosek A; Brzeska H; Sarzała MG
    Cell Calcium; 1986 Apr; 7(2):73-88. PubMed ID: 2939958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.