BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 4076373)

  • 1. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects.
    Elekes K; Szabo T
    Exp Brain Res; 1985; 60(3):509-20. PubMed ID: 4076373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic organization in the pacemaker nucleus of a medium-frequency weakly electric fish, Eigenmannia sp.
    Elekes K; Szabo T
    Brain Res; 1982 Apr; 237(2):267-81. PubMed ID: 6177377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mormyrid brainstem--II. The medullary electromotor relay nucleus: an ultrastructural horseradish peroxidase study.
    Elekes K; Ravaille M; Bell CC; Libouban S; Szabo T
    Neuroscience; 1985 Jun; 15(2):417-29. PubMed ID: 4022332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mormyrid brainstem--III. Ultrastructure and synaptic organization of the medullary "pacemaker" nucleus.
    Elekes K; Szabo T
    Neuroscience; 1985 Jun; 15(2):431-43. PubMed ID: 4022333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell types and synaptic organization of the medullary electromotor nucleus in a constant frequency weakly electric fish, Sternarchus albifrons.
    Tokunaga A; Akert K; Sandri C; Bennett MV
    J Comp Neurol; 1980 Aug; 192(3):407-26. PubMed ID: 7419738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological correlates of electrotonic coupling in the magnocellular mesencephalic nucleus of the weakly electric fish Gymnotus carapo.
    Sotelo C; Réthelyi M; Szabo T
    J Neurocytol; 1975 Oct; 4(5):587-607. PubMed ID: 1177002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptology of the command (pacemaker) nucleus in the brain of the weakly electric fish, Sternarchus (Apteronotus) albifrons.
    Elekes K; Szabo T
    Neuroscience; 1981; 6(3):443-60. PubMed ID: 7219724
    [No Abstract]   [Full Text] [Related]  

  • 8. HRP labeling and ultrastructural localization of prepacemaker terminals within the medullary pacemaker nucleus of the weakly electric gymnotiform fish Apteronotus leptorhynchus.
    Szabo T; Heiligenberg W; Ravaille-Veron M
    J Comp Neurol; 1989 Jun; 284(2):169-73. PubMed ID: 2754033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors.
    Dye J; Heiligenberg W
    J Comp Physiol A; 1987 Aug; 161(2):187-200. PubMed ID: 3625572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish.
    Grant K; Bell CC; Clausse S; Ravaille M
    J Comp Neurol; 1986 Mar; 245(4):514-30. PubMed ID: 3700711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron.
    Kimmel CB; Sessions SK; Kimmel RJ
    J Comp Neurol; 1981 May; 198(1):101-20. PubMed ID: 7229136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1988 Aug; 163(4):445-58. PubMed ID: 3184007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates.
    Heiligenberg W; Metzner W; Wong CJ; Keller CH
    J Comp Physiol A; 1996 Nov; 179(5):653-74. PubMed ID: 8888577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of synapses on identified cell types in a gustatory subdivision of the nucleus of the solitary tract.
    Whitehead MC
    J Comp Neurol; 1993 Jun; 332(3):326-40. PubMed ID: 8331219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge.
    Mugnaini E; Maler L
    Synapse; 1987; 1(1):32-56. PubMed ID: 2850619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergence of electrotonic club endings, GABA- and serotoninergic terminals on second order neurons of the electrosensory pathway in mormyrid fish, Gnathonemus petersii and Brienomyrus niger (Teleostei).
    Denizot JP; Clausse S; Elekes K; Geffard M; Grant K; Libouban S; Ravaille-Veron M; Szabo T
    Cell Tissue Res; 1987 Aug; 249(2):301-9. PubMed ID: 2441869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The morphology of the oval nuclei of neonatal Torpedo marmorata.
    Fox GQ
    Cell Tissue Res; 1977 Mar; 178(2):155-67. PubMed ID: 844072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus.
    Montero VM
    Exp Brain Res; 1991; 86(2):257-70. PubMed ID: 1756802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myelinated dendrites in the mormyrid electrosensory lobe.
    Meek J; Hafmans TG; Han V; Bell CC; Grant K
    J Comp Neurol; 2001 Mar; 431(3):255-75. PubMed ID: 11170004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.