BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 4076373)

  • 21. Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish.
    Smith GT; Lu Y; Zakon HH
    J Comp Neurol; 2000 Jul; 423(3):427-39. PubMed ID: 10870083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish.
    Kolodziejski JA; Nelson BS; Smith GT
    J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative ultrastructural study.
    Zupanc GK
    J Neurocytol; 1991 Oct; 20(10):818-33. PubMed ID: 1783940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology of spinal electromotor neurons and presynaptic coupling in the gymnotid Sternarchus albifrons.
    Pappas GD; Waxman SG; Bennett MV
    J Neurocytol; 1975 Aug; 4(4):469-78. PubMed ID: 1151441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (sternopygidae, gymnotiformes).
    Heiligenberg W; Finger T; Matsubara J; Carr C
    Brain Res; 1981 May; 211(2):418-23. PubMed ID: 7016257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):971-83. PubMed ID: 10669509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gap junction protein in weakly electric fish (Gymnotide): immunohistochemical localization with emphasis on structures of the electrosensory system.
    Yamamoto T; Maler L; Hertzberg EL; Nagy JI
    J Comp Neurol; 1989 Nov; 289(3):509-36. PubMed ID: 2553783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius.
    Kalia M; Richter D
    J Comp Neurol; 1988 Aug; 274(4):574-94. PubMed ID: 2464625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex.
    Williams SM; Goldman-Rakic PS; Leranth C
    J Comp Neurol; 1992 Jun; 320(3):353-69. PubMed ID: 1613130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mormyrid rhombencephalon: I. Light and EM investigations on the structure and connections of the lateral line lobe nucleus with HRP labelling.
    Szabo T; Ravaille M; Libouban S; Enger PS
    Brain Res; 1983 Apr; 266(1):1-19. PubMed ID: 6189555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anatomy of the gustatory system in the hamster: synaptology of facial afferent terminals in the solitary nucleus.
    Whitehead MC
    J Comp Neurol; 1986 Feb; 244(1):72-85. PubMed ID: 3950091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. II. An ultrastructural analysis.
    Kalia M; Richter D
    J Comp Neurol; 1985 Nov; 241(4):521-35. PubMed ID: 4078045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish,
    Zupanc GKH
    Front Physiol; 2017; 8():1087. PubMed ID: 29311998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptology of the hypoglossal nucleus in the rat.
    Boone TB; Aldes LD
    Exp Brain Res; 1984; 57(1):22-32. PubMed ID: 6151516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species.
    Martinez D; Metzen MG; Chacron MJ
    J Neurophysiol; 2016 Dec; 116(6):2909-2921. PubMed ID: 27683890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cytology of the posterior lateral line lobe of high-frequency weakly electric fish (Gymnotidae): dendritic differentiation and synaptic specificity in a simple cortex.
    Maler L; Sas EK; Rogers J
    J Comp Neurol; 1981 Jan; 195(1):87-139. PubMed ID: 7204653
    [No Abstract]   [Full Text] [Related]  

  • 37. The synaptic organization of the motor nucleus of the trigeminal nerve in the opossum.
    Hamos JE; King JS
    J Comp Neurol; 1980 Nov; 194(2):441-63. PubMed ID: 7440810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The optic tectum of gymnotiform teleosts Eigenmannia virescens and Apteronotus leptorhynchus: a Golgi study.
    Sas E; Maler L
    Neuroscience; 1986 May; 18(1):215-46. PubMed ID: 2426630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Projections from auditory cortex to the cochlear nucleus in rats: synapses on granule cell dendrites.
    Weedman DL; Ryugo DK
    J Comp Neurol; 1996 Jul; 371(2):311-24. PubMed ID: 8835735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytology and synaptology of the lateral reticular nucleus of the cat.
    Hrycyshyn AW; Flumerfelt BA
    J Comp Neurol; 1981 Apr; 197(3):459-75. PubMed ID: 6163800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.