These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 4076537)

  • 1. Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage.
    Black SD; Gerhart JC
    Dev Biol; 1985 Apr; 108(2):310-24. PubMed ID: 4076537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency twinning of Xenopus laevis embryos from eggs centrifuged before first cleavage.
    Black SD; Gerhart JC
    Dev Biol; 1986 Jul; 116(1):228-40. PubMed ID: 3488238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos.
    Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):157-64. PubMed ID: 8224533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force.
    Black SD
    Adv Space Res; 1989; 9(11):159-68. PubMed ID: 11537329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep cytoplasmic rearrangements during early development in Xenopus laevis.
    Danilchik MV; Denegre JM
    Development; 1991 Apr; 111(4):845-56. PubMed ID: 1879356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
    Vincent JP; Oster GF; Gerhart JC
    Dev Biol; 1986 Feb; 113(2):484-500. PubMed ID: 3949075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE; Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):148-56. PubMed ID: 8224531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg.
    Black SD; Vincent JP
    Dev Biol; 1988 Jul; 128(1):65-71. PubMed ID: 3384178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphibian egg cytoplasm response to altered g-forces and gravity orientation.
    Neff AW; Smith RC; Malacinski GM
    Adv Space Res; 1986; 6(12):21-8. PubMed ID: 11537823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reinvestigation of the role of the grey crescent in axis formation in xenopus laevis.
    Gerhart J; Ubbels G; Black S; Hara K; Kirschner M
    Nature; 1981 Aug; 292(5823):511-6. PubMed ID: 7195987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blastopore formation in the animal hemisphere: functional inversion of gastrulation by centrifugation of Xenopus laevis eggs.
    Black SD; Crutchfield AN; Murphy MD; Swain TC
    Gravit Space Biol Bull; 1998 May; 11(2):15-21. PubMed ID: 11540634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M; Kobayakawa Y; Yamana K
    Development; 1993 May; 118(1):163-70. PubMed ID: 19140289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcation of the amphibian embryo's axis: analysis of variation in response to egg centrifugation.
    Neff AW; Wakahara M; Malacinski GM
    Int J Dev Biol; 1990 Dec; 34(4):391-8. PubMed ID: 2288862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos.
    Danilchik MV; Black SD
    Dev Biol; 1988 Jul; 128(1):58-64. PubMed ID: 2454855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of polarities in the oocyte of Xenopus laevis: the provisional axial symmetry of the full-grown oocyte of Xenopus laevis.
    Ubbels GA
    Cell Mol Life Sci; 1997 Apr; 53(4):382-409. PubMed ID: 9137628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of Xenopus embryos is affected by simulated gravity.
    Yokota H; Neff AW; Malacinski GM
    Adv Space Res; 1994; 14(8):249-55. PubMed ID: 11537924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs.
    Ubbels GA; Hara K; Koster CH; Kirschner MW
    J Embryol Exp Morphol; 1983 Oct; 77():15-37. PubMed ID: 6689175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis.
    Kageura H
    Development; 1997 Apr; 124(8):1543-51. PubMed ID: 9108370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axis determination in polyspermic Xenopus laevis eggs.
    Render JA; Elinson RP
    Dev Biol; 1986 Jun; 115(2):425-33. PubMed ID: 3709970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.