These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4077538)

  • 21. Atmospheric radioactivity in Valencia, Spain, due to the Chernobyl reactor accident.
    Ferrero JL; Jordá ML; Milió J; Monforte L; Moreno A; Navarro E; Senent F; Soriano A; Baeza A; del Río M
    Health Phys; 1987 Nov; 53(5):519-24. PubMed ID: 3667277
    [No Abstract]   [Full Text] [Related]  

  • 22. Comparison of radiological risks from coal burning and nuclear power.
    Cohen BL
    Health Phys; 1985 Mar; 48(3):342-3. PubMed ID: 3980222
    [No Abstract]   [Full Text] [Related]  

  • 23. Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review.
    Mukherjee AB; Zevenhoven R
    Sci Total Environ; 2006 Sep; 368(1):384-92. PubMed ID: 16183102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of toxic and radiation components in air particulates.
    Rausch H; Sziklai IL; Borossay J; Torkos K; Rikker T; Zemplén-Papp E
    Sci Total Environ; 1995 Dec; 173-174():283-91. PubMed ID: 8560225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Let's all play by the same rules!
    Hellums WE
    Health Phys; 1990 Mar; 58(3):377. PubMed ID: 2104503
    [No Abstract]   [Full Text] [Related]  

  • 26. [Radiation-hygienic significance of gas-aerosol discharge of coal thermoelectric plants (review of the literature)].
    Novikova NK; Knizhnikov VA
    Gig Sanit; 1990 Mar; (3):42-5. PubMed ID: 2200741
    [No Abstract]   [Full Text] [Related]  

  • 27. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The radiological impact from airborne routine discharges of a modern coal-fired power plant.
    Zeevaert T; Sweeck L; Vanmarcke H
    J Environ Radioact; 2006; 85(1):1-22. PubMed ID: 15990204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations.
    Hinkley JT; Bridgman HA; Buhre BJ; Gupta RP; Nelson PF; Wall TF
    Sci Total Environ; 2008 Feb; 391(1):104-13. PubMed ID: 18054995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Tritium in the environment in the vicinity of enterprises with a nuclear fuel cycle].
    Telushkina EL
    Gig Sanit; 1983 Mar; (3):62-5. PubMed ID: 6343194
    [No Abstract]   [Full Text] [Related]  

  • 31. Environmental impact of coal industry and thermal power plants in India.
    Mishra UC
    J Environ Radioact; 2004; 72(1-2):35-40. PubMed ID: 15162853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Radio-ecological control of environmental objects in the vicinity of the "Kozloduĭ" atomic energy power station].
    Markelova VF; Dichev G; Todorov N
    Gig Sanit; 1990 Mar; (3):65-70. PubMed ID: 2384240
    [No Abstract]   [Full Text] [Related]  

  • 33. Source apportionment of PM2.5 in Beijing in 2004.
    Song Y; Tang X; Xie S; Zhang Y; Wei Y; Zhang M; Zeng L; Lu S
    J Hazard Mater; 2007 Jul; 146(1-2):124-30. PubMed ID: 17208371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10.
    Xie R; Seip HM; Wibetoe G; Nori S; McLeod CW
    Sci Total Environ; 2006 Nov; 370(2-3):409-15. PubMed ID: 16899282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation on chemical species of arsenic, selenium and antimony in fly ash from coal fuel thermal power stations.
    Narukawa T; Takatsu A; Chiba K; Riley KW; French DH
    J Environ Monit; 2005 Dec; 7(12):1342-8. PubMed ID: 16307094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emissions of mercury and other trace elements from coal-fired power plants in Japan.
    Ito S; Yokoyama T; Asakura K
    Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of occupational radiation exposures to NORM at an Irish peat-fired power station and potential use of peat fly ash by the construction industry.
    Organo C; Lee EM; Menezes G; Finch EC
    J Radiol Prot; 2005 Dec; 25(4):461-74. PubMed ID: 16340073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Trace element emissions from brown coal power plants: the effect of electro-precipitators on the composition of fly ash].
    Lüderitz P; Marquardt D
    Z Gesamte Hyg; 1988 Apr; 34(4):266-9. PubMed ID: 3414140
    [No Abstract]   [Full Text] [Related]  

  • 39. Analysis of coal slag for naturally occurring radioactive material.
    Spitz HB; Rajaretnam G
    Am Ind Hyg Assoc J; 1998 Jul; 59(7):471-7. PubMed ID: 9697295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Speciation of nickel in Canadian subbituminous and bituminous feed coals, and their ash by-products.
    Goodarzi F; Huggins F
    J Environ Monit; 2004 Oct; 6(10):787-91. PubMed ID: 15480491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.