These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4077873)

  • 1. Regulation of drug release from polymer matrices by oscillating magnetic fields.
    Edelman ER; Kost J; Bobeck H; Langer R
    J Biomed Mater Res; 1985 Jan; 19(1):67-83. PubMed ID: 4077873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo kinetics of regulated drug release from polymer matrices by oscillating magnetic fields.
    Edelman ER; Brown L; Taylor J; Langer R
    J Biomed Mater Res; 1987 Mar; 21(3):339-53. PubMed ID: 3558448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical deformation of polymer matrix controlled release devices modulates drug release.
    Edelman ER; Fiorino A; Grodzinsky A; Langer R
    J Biomed Mater Res; 1992 Dec; 26(12):1619-31. PubMed ID: 1484066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetically enhanced insulin release in diabetic rats.
    Kost J; Wolfrum J; Langer R
    J Biomed Mater Res; 1987 Dec; 21(12):1367-73. PubMed ID: 3323204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of release from magnetically controlled polymeric drug release devices.
    Edelman ER; Langer R
    Biomaterials; 1993 Jul; 14(8):621-6. PubMed ID: 8399957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response.
    Zhang J; Misra RD
    Acta Biomater; 2007 Nov; 3(6):838-50. PubMed ID: 17638599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release.
    Wischke C; Neffe AT; Steuer S; Lendlein A
    J Control Release; 2009 Sep; 138(3):243-50. PubMed ID: 19470395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and confocal microscopy studies of the mechanisms of burst drug release from PLGA microspheres.
    Messaritaki A; Black SJ; van der Walle CF; Rigby SP
    J Control Release; 2005 Nov; 108(2-3):271-81. PubMed ID: 16169112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-encapsulation of dexamethasone 21-acetate and SPIONs into biodegradable polymeric microparticles designed for intra-articular delivery.
    Butoescu N; Jordan O; Petri-Fink A; Hofmann H; Doelker E
    J Microencapsul; 2008 Aug; 25(5):339-50. PubMed ID: 18465308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility.
    Fuhrer R; Athanassiou EK; Luechinger NA; Stark WJ
    Small; 2009 Mar; 5(3):383-8. PubMed ID: 19180549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of algal blooms in freshwater using magnetic polymer.
    Liu D; Li F; Zhang B
    Water Sci Technol; 2009; 59(6):1085-91. PubMed ID: 19342803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field.
    Liu TY; Hu SH; Liu KH; Shaiu RS; Liu DM; Chen SY
    Langmuir; 2008 Dec; 24(23):13306-11. PubMed ID: 18954093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.
    Sorg BS; Welch AJ
    Lasers Surg Med; 2001; 28(4):297-306. PubMed ID: 11344508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability.
    Ghebremeskel AN; Vemavarapu C; Lodaya M
    Int J Pharm; 2007 Jan; 328(2):119-29. PubMed ID: 16968659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically controlled release systems: effect of polymer composition.
    Kost J; Noecker R; Kunica E; Langer R
    J Biomed Mater Res; 1985 Oct; 19(8):935-40. PubMed ID: 3880352
    [No Abstract]   [Full Text] [Related]  

  • 19. Non-covalent surface engineering of an alloplastic polymeric bone graft material for controlled protein release.
    Diniz Oliveira HF; Weiner AA; Majumder A; Shastri VP
    J Control Release; 2008 Mar; 126(3):237-45. PubMed ID: 18241948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic modulation of release of macromolecules from polymers.
    Hsieh DS; Langer R; Folkman J
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1863-7. PubMed ID: 6940193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.