These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4079359)

  • 21. Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study.
    Hussain M; Natarajan RN; An HS; Andersson GB
    Spine (Phila Pa 1976); 2010 Apr; 35(9):939-47. PubMed ID: 20375779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posterior facet load changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    J Spinal Disord Tech; 2012 Jun; 25(4):218-25. PubMed ID: 22652989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Creep bulging deformation of intervertebral disc under axial compression.
    Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ
    Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The poro-elastic behaviour of the intervertebral disc: A new perspective on diurnal fluid flow.
    Vergroesen PA; van der Veen AJ; Emanuel KS; van Dieën JH; Smit TH
    J Biomech; 2016 Apr; 49(6):857-863. PubMed ID: 26684430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve.
    Ayotte DC; Ito K; Perren SM; Tepic S
    J Biomech Eng; 2000 Dec; 122(6):587-93. PubMed ID: 11192378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part I. Human intervertebral joints.
    Burns ML; Kaleps I; Kazarian LE
    J Biomech; 1984; 17(2):113-30. PubMed ID: 6725291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite element methods in spine biomechanics research.
    Gilbertson LG; Goel VK; Kong WZ; Clausen JD
    Crit Rev Biomed Eng; 1995; 23(5-6):411-73. PubMed ID: 9017345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study.
    Masni-Azian ; Tanaka M
    Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical implications of lumbar spinal ligament transection.
    Von Forell GA; Bowden AE
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1685-95. PubMed ID: 23477405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The canine intervertebral disk: part one: structure and function.
    Bray JP; Burbidge HM
    J Am Anim Hosp Assoc; 1998; 34(1):55-63. PubMed ID: 9527431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Biomechanics of the lumbar intervertebral disc].
    Rouch P; Skalli W
    Bull Acad Natl Med; 2015 Nov; 199(8-9):1335-1343. PubMed ID: 29874423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part II. Rhesus monkey intervertebral joints.
    Kaleps I; Kazarian LE; Burns ML
    J Biomech; 1984; 17(2):131-6. PubMed ID: 6725292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics and biochemistry of the intervertebral disks: the need for correlation studies.
    Akeson WH; Woo SL; Taylor TK; Ghosh P; Bushell GR
    Clin Orthop Relat Res; 1977; (129):133-40. PubMed ID: 343960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A computational spinal motion segment model incorporating a matrix composition-based model of the intervertebral disc.
    Barthelemy VM; van Rijsbergen MM; Wilson W; Huyghe JM; van Rietbergen B; Ito K
    J Mech Behav Biomed Mater; 2016 Feb; 54():194-204. PubMed ID: 26469631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions.
    Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H
    J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creep characteristics of the human spinal column.
    Kazarian LE
    Orthop Clin North Am; 1975 Jan; 6(1):3-18. PubMed ID: 1113976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
    Ueno K; Liu YK
    J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying intervertebral disc mechanics: a new definition of the neutral zone.
    Smit TH; van Tunen MS; van der Veen AJ; Kingma I; van Dieën JH
    BMC Musculoskelet Disord; 2011 Feb; 12():38. PubMed ID: 21299900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc.
    Riches PE; McNally DS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):329-35. PubMed ID: 16225149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stress distribution of the lumbar spine and disc degeneration.
    Dai L; Cheng P; Tu K; Xu Y; Zhang W
    Chin Med Sci J; 1992 Sep; 7(3):166-8. PubMed ID: 1286185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.