These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4079359)

  • 41. A mathematical model of the compression of a spinal disc.
    Ngwa M; Agyingi E
    Math Biosci Eng; 2011 Oct; 8(4):1061-83. PubMed ID: 21936600
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
    Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK
    J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhesus monkey intervertebral disk viscoelastic response to shear stress.
    Kelley BS; Lafferty JF; Bowman DA; Clark PA
    J Biomech Eng; 1983 Feb; 105(1):51-4. PubMed ID: 6843102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine.
    Keller TS; Colloca CJ; Harrison DE; Harrison DD; Janik TJ
    Spine J; 2005; 5(3):297-309. PubMed ID: 15863086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement and analysis of the in vivo posteroanterior impulse response of the human thoracolumbar spine: a feasibility study.
    Nathan M; Keller TS
    J Manipulative Physiol Ther; 1994 Sep; 17(7):431-41. PubMed ID: 7989876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Patterns of height changes in anterior and posterior cervical disc regions affects the contact loading at posterior facets during moderate and severe disc degeneration: a poroelastic C5-C6 finite element model study.
    Hussain M; Natarajan RN; An HS; Andersson GB
    Spine (Phila Pa 1976); 2010 Aug; 35(18):E873-81. PubMed ID: 21289493
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A mathematical model of spinal response to impact.
    Orne D; Liu YK
    J Biomech; 1971 Jan; 4(1):49-71. PubMed ID: 5127938
    [No Abstract]   [Full Text] [Related]  

  • 49. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS; Spengler DM; Hansson TH
    J Orthop Res; 1987; 5(4):467-78. PubMed ID: 3681521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model-Method and Performance in Flexed Postures.
    Meng X; Bruno AG; Cheng B; Wang W; Bouxsein ML; Anderson DE
    J Biomech Eng; 2015 Oct; 137(10):101008. PubMed ID: 26299207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of disc degeneration on the mechanical behavior of the human lumbar spine: a probabilistic finite element study.
    Bashkuev M; Reitmaier S; Schmidt H
    Spine J; 2018 Oct; 18(10):1910-1920. PubMed ID: 29886164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relevance of in vitro and in vivo models for intervertebral disc degeneration.
    An HS; Masuda K
    J Bone Joint Surg Am; 2006 Apr; 88 Suppl 2():88-94. PubMed ID: 16595451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc.
    Karajan N; Otto D; Oladyshkin S; Ehlers W
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1065-80. PubMed ID: 24553971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Considerations when loading spinal finite element models with predicted muscle forces from inverse static analyses.
    Zhu R; Zander T; Dreischarf M; Duda GN; Rohlmann A; Schmidt H
    J Biomech; 2013 Apr; 46(7):1376-8. PubMed ID: 23540724
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and biology of the intervertebral disk in health and disease.
    Chan WC; Sze KL; Samartzis D; Leung VY; Chan D
    Orthop Clin North Am; 2011 Oct; 42(4):447-64, vii. PubMed ID: 21944583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative studies of cervical spine anterior stabilization systems--Finite element analysis.
    Mackiewicz A; Banach M; Denisiewicz A; Bedzinski R
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():72-9. PubMed ID: 26851563
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear analysis of intervertebral disk under dynamic load.
    Natali A; Meroi E
    J Biomech Eng; 1990 Aug; 112(3):358-63. PubMed ID: 2214720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.