These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4079359)

  • 61. A poroelastic-swelling finite element model with application to the intervertebral disc.
    Laible JP; Pflaster DS; Krag MH; Simon BR; Haugh LD
    Spine (Phila Pa 1976); 1993 Apr; 18(5):659-70. PubMed ID: 8484158
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence prediction of tissue injury on frequency variations of the lumbar spine under vibration.
    Guo LX; Zhang M; Li JL; Zhang YM; Wang ZW; Teo EC
    OMICS; 2009 Dec; 13(6):521-6. PubMed ID: 19780682
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Incorporation of spinal flexibility measurements into finite element analysis.
    Gardner-Morse MG; Laible JP; Stokes IA
    J Biomech Eng; 1990 Nov; 112(4):481-3. PubMed ID: 2273879
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.
    Nowak J; Nowak B; Kaczmarek M
    Acta Bioeng Biomech; 2015; 17(4):39-48. PubMed ID: 26899777
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.
    Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB
    Med Eng Phys; 2011 May; 33(4):438-45. PubMed ID: 21167763
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prediction of in vivo lower cervical spinal loading using musculoskeletal multi-body dynamics model during the head flexion/extension, lateral bending and axial rotation.
    Diao H; Xin H; Jin Z
    Proc Inst Mech Eng H; 2018 Nov; 232(11):1071-1082. PubMed ID: 30223718
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Moderately degenerated lumbar motion segments: Are they truly unstable?
    van Rijsbergen MM; Barthelemy VM; Vrancken AC; Crijns SP; Wilke HJ; Wilson W; van Rietbergen B; Ito K
    Biomech Model Mechanobiol; 2017 Apr; 16(2):537-547. PubMed ID: 27664020
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fundamental biomechanics of the spine--What we have learned in the past 25 years and future directions.
    Oxland TR
    J Biomech; 2016 Apr; 49(6):817-832. PubMed ID: 26706717
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural analysis for the forces in the human spinal column and its musculature.
    Yettram AL; Jackman MJ
    J Biomed Eng; 1982 Apr; 4(2):118-24. PubMed ID: 7070064
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biomechanical Effects of Human Lumbar Discography: In Vitro Experiments and Their Finite Element Validation.
    Lipscomb KE; Sarigul-Klijn N; Klineberg E; Mohan V
    Clin Spine Surg; 2017 Apr; 30(3):E219-E225. PubMed ID: 28323703
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A regenerative approach towards recovering the mechanical properties of degenerated intervertebral discs: Genipin and platelet-rich plasma therapies.
    Nikkhoo M; Wang JL; Abdollahi M; Hsu YC; Parnianpour M; Khalaf K
    Proc Inst Mech Eng H; 2017 Feb; 231(2):127-137. PubMed ID: 28019241
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Material constants for a finite element model of the intervertebral disk with a fiber composite annulus.
    Spilker RL; Jakobs DM; Schultz AB
    J Biomech Eng; 1986 Feb; 108(1):1-11. PubMed ID: 3959546
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational biomechanics of a lumbar motion segment in pure and combined shear loads.
    Schmidt H; Bashkuev M; Dreischarf M; Rohlmann A; Duda G; Wilke HJ; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2513-21. PubMed ID: 23953504
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size.
    Woldtvedt DJ; Womack W; Gadomski BC; Schuldt D; Puttlitz CM
    J Biomech Eng; 2011 Jun; 133(6):061009. PubMed ID: 21744929
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study.
    Ruberté LM; Natarajan RN; Andersson GB
    J Biomech; 2009 Feb; 42(3):341-8. PubMed ID: 19136113
    [TBL] [Abstract][Full Text] [Related]  

  • 80. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.