These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4079362)

  • 1. A general method for determining the functional role of a muscle.
    Andrews JG
    J Biomech Eng; 1985 Nov; 107(4):348-53. PubMed ID: 4079362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical considerations in the modeling of muscle function.
    Andrews JG; Hay JG
    Acta Morphol Neerl Scand; 1983 Sep; 21(3):199-223. PubMed ID: 6637590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of the anthropometrical and geometrical parameters of the bones and muscles on a musculoskeletal model of the lower limbs.
    Dao TT; Marin F; Ho Ba Tho MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5251-4. PubMed ID: 19964666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modeling and computer simulation approach to determine optimal lower extremity joint angular velocities based on a criterion to maximize individual muscle power.
    Hawkins D
    Comput Methods Programs Biomed; 1994 Mar; 42(3):213-22. PubMed ID: 8062553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the biarticular hamstrings and gastrocnemius muscles in closed chain lower limb extension.
    Cleather DJ; Southgate DF; Bull AM
    J Theor Biol; 2015 Jan; 365():217-25. PubMed ID: 25451963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design parameters of the bicycle-rider system for maximal muscle power output.
    Yoshihuku Y; Herzog W
    J Biomech; 1990; 23(10):1069-79. PubMed ID: 2229090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional musculoskeletal model for gait analysis. Anatomical variability estimates.
    White SC; Yack HJ; Winter DA
    J Biomech; 1989; 22(8-9):885-93. PubMed ID: 2613724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining muscle's force and action in multi-articular movement.
    Zajac FE; Gordon ME
    Exerc Sport Sci Rev; 1989; 17():187-230. PubMed ID: 2676547
    [No Abstract]   [Full Text] [Related]  

  • 10. Cupiennius salei: biomechanical properties of the tibia-metatarsus joint and its flexing muscles.
    Siebert T; Weihmann T; Rode C; Blickhan R
    J Comp Physiol B; 2010 Feb; 180(2):199-209. PubMed ID: 19756652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor strategy for pedaling: muscle groups and biomechanical functions.
    Raasch CC; Zajac FE
    J Neurophysiol; 1999 Aug; 82(2):515-25. PubMed ID: 10444651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human gait analysis: determination of instantaneous joint reactive forces, muscle forces and the stress distribution in bone segments. Part 11.
    Ghista D; Toridis T; Srinivasan TM
    Biomed Tech (Berl); 1976 Apr; 21(3):66-74. PubMed ID: 1268302
    [No Abstract]   [Full Text] [Related]  

  • 14. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity.
    Klein Horsman MD; Koopman HF; van der Helm FC; Prosé LP; Veeger HE
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):239-47. PubMed ID: 17134801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints.
    Winters JM; Stark L
    J Biomech; 1988; 21(12):1027-41. PubMed ID: 2577949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2018 Apr; 54():56-64. PubMed ID: 29487037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of muscle and joint forces: a new technique to solve the indeterminate problem.
    An KN; Kwak BM; Chao EY; Morrey BF
    J Biomech Eng; 1984 Nov; 106(4):364-7. PubMed ID: 6513533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion.
    Paternoster FK; Seiberl W; Hahn D; Schwirtz A
    J Biomech; 2016 Mar; 49(5):773-779. PubMed ID: 26903409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
    Correa TA; Baker R; Graham HK; Pandy MG
    J Biomech; 2011 Jul; 44(11):2096-105. PubMed ID: 21703627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.