These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Silanization of glass in the making of ion-sensitive microelectrodes. Munoz JL; Deyhimi F; Coles JA J Neurosci Methods; 1983 Jul; 8(3):231-47. PubMed ID: 6312200 [TBL] [Abstract][Full Text] [Related]
5. Whole-cell recording of intracellular pH with silanized and oiled patch-type single or double-barreled microelectrodes. Thomas RC; Pagnotta SE; Nistri A Pflugers Arch; 2003 Nov; 447(2):259-65. PubMed ID: 12937988 [TBL] [Abstract][Full Text] [Related]
6. A novel resin-filled ion-sensitive micro-electrode suitable for intracellular measurements in isolated cardiac myocytes. Rodrigo GC; Chapman RA Pflugers Arch; 1990 Apr; 416(1-2):196-200. PubMed ID: 2352833 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous Measurement of Intracellular pH and K+ or NO3- in Barley Root Cells Using Triple-Barreled, Ion-Selective Microelectrodes. Walker DJ; Smith SJ; Miller AJ Plant Physiol; 1995 Jun; 108(2):743-751. PubMed ID: 12228506 [TBL] [Abstract][Full Text] [Related]
8. A new moving-coil microelectrode puller. Ensor DR J Neurosci Methods; 1979 Mar; 1(1):95-105. PubMed ID: 544958 [TBL] [Abstract][Full Text] [Related]
9. A simple method for beveling micropipettes for intracellular recording and current injection. Tauchi M; Kikuchi R Pflugers Arch; 1977 Mar; 368(1-2):153-5. PubMed ID: 558588 [TBL] [Abstract][Full Text] [Related]
10. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Pine J J Neurosci Methods; 1980 Feb; 2(1):19-31. PubMed ID: 7329089 [TBL] [Abstract][Full Text] [Related]
11. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes. Deveau JS; Lindinger MI; Grodzinski B Biol Proced Online; 2005; 7():31-40. PubMed ID: 16136222 [TBL] [Abstract][Full Text] [Related]
12. Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue. Haack N; Durry S; Kafitz KW; Chesler M; Rose R J Vis Exp; 2015 Sep; (103):. PubMed ID: 26381747 [TBL] [Abstract][Full Text] [Related]
13. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. Bolton TB; Vaughan-Jones RD J Physiol; 1977 Sep; 270(3):801-33. PubMed ID: 20501 [TBL] [Abstract][Full Text] [Related]
14. Dry beveling micropipettes using a computer hard drive. Canfield JG J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203 [TBL] [Abstract][Full Text] [Related]
15. The elgiloy microelectrode: fabrication techniques and characteristics. Ashford JW; Coburn KL; Fuster JM J Neurosci Methods; 1985 Sep; 14(4):247-52. PubMed ID: 4058056 [TBL] [Abstract][Full Text] [Related]
16. Quartz micropipettes for intracellular voltage microelectrodes and ion-selective microelectrodes. Munoz JL; Coles JA J Neurosci Methods; 1987 Nov; 22(1):57-64. PubMed ID: 2826932 [TBL] [Abstract][Full Text] [Related]
17. Single-unit pH-sensitive double-barreled microelectrodes for extracellular use. Javaheri S; De Hemptinne A; Leusen I J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):907-12. PubMed ID: 6490474 [TBL] [Abstract][Full Text] [Related]
18. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids. Fujimoto M; Kubota T Jpn J Physiol; 1976; 26(6):631-50. PubMed ID: 16152 [TBL] [Abstract][Full Text] [Related]
19. A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes. Swadlow HA; Bereshpolova Y; Bezdudnaya T; Cano M; Stoelzel CR J Neurophysiol; 2005 May; 93(5):2959-65. PubMed ID: 15601730 [TBL] [Abstract][Full Text] [Related]