These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4079868)

  • 1. The perturbation of electron beam dose distributions at medium interfaces.
    Werner BL
    Med Phys; 1985; 12(6):754-63. PubMed ID: 4079868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose distributions in regions containing beta sources: large spherical source regions in a homogeneous medium.
    Werner BL; Kwok CS; Das IJ
    Med Phys; 1988; 15(3):358-63. PubMed ID: 3405138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of pencil beam widths for electron-beam dose calculations.
    Antolak JA; Mah E; Scrimger JW
    Med Phys; 1995 Apr; 22(4):411-9. PubMed ID: 7609721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of dose distributions in the vicinity of high-Z interfaces for photon beams.
    Sauer OA
    Med Phys; 1995 Oct; 22(10):1685-90. PubMed ID: 8551995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose perturbations at interfaces in photon beams.
    Werner BL; Das IJ; Khan FM; Meigooni AS
    Med Phys; 1987; 14(4):585-95. PubMed ID: 3626998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of high-energy electron dose distributions in tissue-equivalent media. I. Determination of the dose function of point unidirectional sources.
    Kozlov AP; Shishov VA
    Strahlentherapie; 1982 May; 158(5):298-304. PubMed ID: 7112625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A solution to the Yang equation with electron energy loss following Harder's formula.
    Tulovsky V; Sandison GA; Papiez LS
    Med Phys; 1994 Sep; 21(9):1377-81. PubMed ID: 7838047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhomogeneity corrections in electron-beam dose planning. Limitations with the semi-infinite slab approximation.
    Lax I
    Phys Med Biol; 1986 Aug; 31(8):879-92. PubMed ID: 3763698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The optimization of pencil beam widths for use in an electron pencil beam algorithm.
    McParland BJ; Cunningham JR; Woo MK
    Med Phys; 1988; 15(4):489-97. PubMed ID: 3211041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equations for the dose distributions of high-energy electrons.
    Ueda T
    Strahlentherapie; 1979 Oct; 155(10):709-13. PubMed ID: 115117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abutment of high energy electron fields.
    Harms WB; Purdy JA
    Int J Radiat Oncol Biol Phys; 1991 Apr; 20(4):853-8. PubMed ID: 2004964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of broad beam central axis depth dose curves from different accelerators using the universal depth dose curve model.
    Werner BL
    Acta Radiol Suppl; 1983; 364():35-41. PubMed ID: 6316738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional electron dose calculation using an improved hybrid pencil beam model.
    Chengjun G; Zhangwen W; Zhengming L; Jette D
    Med Phys; 2003 Mar; 30(3):415-23. PubMed ID: 12674242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using background subtraction for measuring the dose distribution of an electron pencil beam.
    McParland BJ
    Med Phys; 1987; 14(3):406-9. PubMed ID: 3600532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for calculating the effects of small inhomogeneities on electron beam dose distributions.
    Perry DJ; Holt JG
    Med Phys; 1980; 7(3):207-15. PubMed ID: 7393146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obliquity correction for electron beams.
    Khan FM; Deibel FC; Soleimani-Meigooni A
    Med Phys; 1985; 12(6):749-53. PubMed ID: 4079867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Calculation of dose distribution of fast electrons within and behind tissue inhomogeneities of any width].
    Harder D; Mandour MA
    Strahlentherapie; 1976 Dec; 152(6):509-16. PubMed ID: 1006712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.