BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 4080546)

  • 1. Sites of circularization of the Tetrahymena rRNA IVS are determined by sequence and influenced by position and secondary structure.
    Been MD; Cech TR
    Nucleic Acids Res; 1985 Dec; 13(23):8389-408. PubMed ID: 4080546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of circularization sites in a group I IVS RNA requires multiple alignments of an internal template-like sequence.
    Been MD; Cech TR
    Cell; 1987 Sep; 50(6):951-61. PubMed ID: 2441876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing.
    Inoue T; Sullivan FX; Cech TR
    J Mol Biol; 1986 May; 189(1):143-65. PubMed ID: 2431151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence requirements for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA.
    Price JV; Kieft GL; Kent JR; Sievers EL; Cech TR
    Nucleic Acids Res; 1985 Mar; 13(6):1871-89. PubMed ID: 4000946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an authentic intermediate in the self-splicing process of ribosomal precursor RNA in macronuclei of Tetrahymena thermophila.
    Kister KP; Eckert WA
    Nucleic Acids Res; 1987 Mar; 15(5):1905-20. PubMed ID: 3645543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence.
    Cech TR; Zaug AJ; Grabowski PJ
    Cell; 1981 Dec; 27(3 Pt 2):487-96. PubMed ID: 6101203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity.
    Been MD; Cech TR
    Cell; 1986 Oct; 47(2):207-16. PubMed ID: 3021333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor.
    Bass BL; Cech TR
    Biochemistry; 1986 Aug; 25(16):4473-7. PubMed ID: 3639741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences.
    Cech TR; Tanner NK; Tinoco I; Weir BR; Zuker M; Perlman PS
    Proc Natl Acad Sci U S A; 1983 Jul; 80(13):3903-7. PubMed ID: 6306649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5' exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5' splice site in the 3' exon.
    Price JV; Engberg J; Cech TR
    J Mol Biol; 1987 Jul; 196(1):49-60. PubMed ID: 2443717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor.
    Burke JM; Irvine KD; Kaneko KJ; Kerker BJ; Oettgen AB; Tierney WM; Williamson CL; Zaug AJ; Cech TR
    Cell; 1986 Apr; 45(2):167-76. PubMed ID: 2421916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibility of cyclization of the Tetrahymena rRNA intervening sequence: implication for the mechanism of splice site choice.
    Sullivan FX; Cech TR
    Cell; 1985 Sep; 42(2):639-48. PubMed ID: 3849344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 5-fluorouracil substitution on the self-splicing activity of Tetrahymena ribosomal RNA.
    Danenberg PV; Shea LC; Danenberg K
    Cancer Res; 1990 Mar; 50(6):1757-63. PubMed ID: 2407343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitation of group I splicing in vivo: misfolding of the Tetrahymena IVS and the role of ribosomal RNA exons.
    Nikolcheva T; Woodson SA
    J Mol Biol; 1999 Sep; 292(3):557-67. PubMed ID: 10497021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena.
    Kruger K; Grabowski PJ; Zaug AJ; Sands J; Gottschling DE; Cech TR
    Cell; 1982 Nov; 31(1):147-57. PubMed ID: 6297745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA.
    Bass BL; Cech TR
    Nature; 1984 Apr 26-May 2; 308(5962):820-6. PubMed ID: 6562377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of modified ribose moieties of guanosine: new cleavage reactions mediated by the IVS of Tetrahymena precursor rRNA.
    Kay PS; Inoue T
    Nucleic Acids Res; 1987 Feb; 15(4):1559-77. PubMed ID: 3029719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing of large ribosomal precursor RNA and processing of intron RNA in yeast mitochondria.
    Tabak HF; Van der Horst G; Osinga KA; Arnberg AC
    Cell; 1984 Dec; 39(3 Pt 2):623-9. PubMed ID: 6210151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic activity of the conserved core of a group I self-splicing intron.
    Szostak JW
    Nature; 1986 Jul 3-9; 322(6074):83-6. PubMed ID: 3014350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.