These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4080945)

  • 21. Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation.
    Howdieshell TR; Callaway D; Webb WL; Gaines MD; Procter CD; Sathyanarayana ; Pollock JS; Brock TL; McNeil PL
    J Surg Res; 2001 Apr; 96(2):173-82. PubMed ID: 11266270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Wounds and the healing process: traumatic wounds and operative wounds].
    Hayashi S
    Kango Gijutsu; 1983 Oct; 29(13):1701-6. PubMed ID: 6557158
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibition of wound contraction with colchicine and D-penicillamine.
    Joseph HL; Anderson GL; Barker JH; Roisen FJ; Weiner LJ; Tobin GR
    J Surg Res; 1996 Feb; 61(1):197-200. PubMed ID: 8769966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of contractile proteins in wound healing and fibrocontractive diseases.
    Gabbiani G
    Methods Achiev Exp Pathol; 1979; 9():187-206. PubMed ID: 763158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation.
    Hinz B; Mastrangelo D; Iselin CE; Chaponnier C; Gabbiani G
    Am J Pathol; 2001 Sep; 159(3):1009-20. PubMed ID: 11549593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mannose reduces hyaluronan and leukocytes in wound granulation tissue and inhibits migration and hyaluronan-dependent monocyte binding.
    Jokela TA; Kuokkanen J; Kärnä R; Pasonen-Seppänen S; Rilla K; Kössi J; Laato M; Tammi RH; Tammi MI
    Wound Repair Regen; 2013; 21(2):247-55. PubMed ID: 23464634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Second-intention repair in the horse and pony and management of exuberant granulation tissue.
    Wilmink JM; van Weeren PR
    Vet Clin North Am Equine Pract; 2005 Apr; 21(1):15-32. PubMed ID: 15691597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of fibroblasts in healing freeze and burn injuries in rats.
    Ehrlich HP; Hembry RM
    Am J Pathol; 1984 Nov; 117(2):218-24. PubMed ID: 6496654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Quantitative characteristics of changes in the cellular composition and vascularization of aseptic wounds in rat skin, healing without treatment and during stimulation of repair processes by exogenous collagen].
    Berchenko GN; Berchenko VV
    Biull Eksp Biol Med; 1987 Sep; 104(9):372-5. PubMed ID: 3663931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modifications to the rate of wound contraction by allopurinol.
    Teo TC; Naylor IL
    Br J Plast Surg; 1995 Jun; 48(4):198-202. PubMed ID: 7640851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of topical application of antimicrobials and bandaging on healing and granulation tissue formation in wounds of the distal aspect of the limbs in horses.
    Berry DB; Sullins KE
    Am J Vet Res; 2003 Jan; 64(1):88-92. PubMed ID: 12518884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Dynamics of nucleic acid synthesis in the granulation tissue of skin wounds in the rat].
    Silaeva SA; Khatsernova BIa; Berchenko GN; Nikolaev AIa; Shekhter AB
    Vopr Med Khim; 1986; 32(3):126-31. PubMed ID: 2425485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar.
    Desmoulière A; Redard M; Darby I; Gabbiani G
    Am J Pathol; 1995 Jan; 146(1):56-66. PubMed ID: 7856739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Are excessive granulation tissue formation and retarded wound contraction due to decreased collagenase activity in wounds in tight-skin mice?
    Agren MS; Mertz PM
    Br J Dermatol; 1994 Sep; 131(3):337-40. PubMed ID: 7918007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Appraisal on the wound healing activity of different extracts obtained from
    Toppo FA; Pawar RS
    Niger J Clin Pract; 2016; 19(6):753-760. PubMed ID: 27811447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrastructure of active versus passive contracture of wounds.
    Rudolph R; Woodward M; Hurn I
    Surg Gynecol Obstet; 1980 Sep; 151(3):396-400. PubMed ID: 7404313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the wound healing activity of Carapa guianensis L. (Meliaceae) bark extract in rats using excision, incision, and dead space wound models.
    Nayak BS; Kanhai J; Milne DM; Swanston WH; Mayers S; Eversley M; Rao AV
    J Med Food; 2010 Oct; 13(5):1141-6. PubMed ID: 20828307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds.
    Mirastschijski U; Haaksma CJ; Tomasek JJ; Agren MS
    Exp Cell Res; 2004 Oct; 299(2):465-75. PubMed ID: 15350544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical and structural correlates of contracture induced by metabolic blockade in cardiac muscle from the rat.
    Bing OH; Fishbein MC
    Circ Res; 1979 Aug; 45(2):298-308. PubMed ID: 445710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cultured myofibroblasts: a useful model to study wound contraction and pathological contracture.
    Vande Berg JS; Rudolph R
    Ann Plast Surg; 1985 Feb; 14(2):111-20. PubMed ID: 3888033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.