These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 408159)

  • 1. Prevention of sulfhydryl autoxidation by a polypeptide from red kidney beans, described to be a stimulator of RNA synthesis.
    Fedorcsák I; Harms-Ringdahl M; Ehrenberg L
    Exp Cell Res; 1977 Sep; 108(2):331-9. PubMed ID: 408159
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation of substances that stimulate RNA synthesis from red kidney bean: their activities in lymphocytes and Escherichia coli.
    Harms-Ringdahl M; Fedorcsák I; Ehrenberg L
    Proc Natl Acad Sci U S A; 1973 Feb; 70(2):569-73. PubMed ID: 4568731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of H2O2 in the reversible inhibition of RNA synthesis by thiols in E. coli.
    Ehrenberg L; Fedorcsák I; Harms-Ringdahl M; Näslund M
    Acta Chem Scand B; 1974; 28(8):960-2. PubMed ID: 4613090
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural studies of a polypeptide that stimulates RNA synthesis: a component obtained from red kidney beans, the source of phytohemagglutinins.
    Harms-Ringdahl M; Jörnvall H
    Eur J Biochem; 1974 Oct; 48(2):541-7. PubMed ID: 4475639
    [No Abstract]   [Full Text] [Related]  

  • 5. Trypsin inhibitory activity of a polypeptide isolated from red kidney beans, that also enhances lymphocyte stimulation.
    Harms-Ringdahl M; Forsberg J; Fedorcsák I; Ehrenberg L
    Biochem Biophys Res Commun; 1979 Feb; 86(3):492-9. PubMed ID: 426798
    [No Abstract]   [Full Text] [Related]  

  • 6. A method for determination of the synthesis rate of stable and unstable ribonucleic acid in Escherichia coli.
    Dennis PP; Bremer H
    Anal Biochem; 1973 Dec; 56(2):489-501. PubMed ID: 4203109
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of actinomycin on the synthesis of macromolecules in Escherichia coli.
    Moses V; Sharp PB
    Biochim Biophys Acta; 1966 Apr; 119(1):200-3. PubMed ID: 4163800
    [No Abstract]   [Full Text] [Related]  

  • 8. Microbicidal action of compounds generated by transient electric arcs in aqueous systems.
    Edebo L; Holme T; Selin I
    J Gen Microbiol; 1968 Aug; 53(1):1-7. PubMed ID: 4971159
    [No Abstract]   [Full Text] [Related]  

  • 9. Replication of colicinogenic factor E1 DNA in plasmolysed Escherichia coli cells. Coupling of DNA replication and RNA synthesis.
    Staudenbauer WL
    Eur J Biochem; 1975 Oct; 58(2):303-13. PubMed ID: 171157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal cation requirements for phytohemagglutinin-induced transformation of human peripheral blood lymphocytes.
    Alford RH
    J Immunol; 1970 Mar; 104(3):698-703. PubMed ID: 4985173
    [No Abstract]   [Full Text] [Related]  

  • 11. Circulating nucleic acids in higher organisms.
    Stroun M; Anker P; Maurice P; Gahan PB
    Int Rev Cytol; 1977; 51():1-48. PubMed ID: 338535
    [No Abstract]   [Full Text] [Related]  

  • 12. Uptake of vitamin B 12 by phytohaemagglutinin-transformed lymphocytes.
    Hoffbrand AV; Tripp E; Das KC
    Br J Haematol; 1973 Feb; 24(2):147-56. PubMed ID: 4351580
    [No Abstract]   [Full Text] [Related]  

  • 13. Chelation of divalent cations by lomofungin: role in inhibition of nucleic acid synthesis.
    Pavletich K; Kuo SC; Lampen JO
    Biochem Biophys Res Commun; 1974 Oct; 60(3):942-50. PubMed ID: 4215422
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of lymphocytes and phytohaemagglutinin: inhibition by chelating agents.
    Kay JE
    Exp Cell Res; 1971 Sep; 68(1):11-6. PubMed ID: 5000345
    [No Abstract]   [Full Text] [Related]  

  • 15. Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes.
    Leive L; Kollin V
    Biochem Biophys Res Commun; 1967 Jul; 28(2):229-36. PubMed ID: 4166571
    [No Abstract]   [Full Text] [Related]  

  • 16. The degradation of ribosomal RNA in E. coli by mitomycin C and AF-5, preferential inhibitors of DNA synthesis.
    Kato N; Okabayashi K; Mizuno D
    J Biochem; 1970 Feb; 67(2):175-84. PubMed ID: 4986210
    [No Abstract]   [Full Text] [Related]  

  • 17. The killing of sensitive cells by colicin D.
    Timmis K; Hedges AJ
    Biochim Biophys Acta; 1972 Mar; 262(2):200-7. PubMed ID: 4622863
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of exogenous cyclic nucleotides on RNA, DNA and protein synthesis in bovine lymphocytes.
    Gawliński S; Kleczkowska D
    Bull Acad Pol Sci Biol; 1973 Dec; 21(12):791-6. PubMed ID: 4786201
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of viral RNA with Escherichia coli. 1. Polycation augmented adsorption of poliovirus-induced double-stranded RNA.
    Lempidakis GA; Koch G
    Arch Biochem Biophys; 1972 Jul; 151(1):200-5. PubMed ID: 4339793
    [No Abstract]   [Full Text] [Related]  

  • 20. Iron- and peroxide-dependent conjugation of dopamine with cysteine: oxidative routes to the novel brain metabolite 5-S-cysteinyldopamine.
    Palumbo A; d'Ischia M; Misuraca G; De Martino L; Prota G
    Biochim Biophys Acta; 1995 Oct; 1245(2):255-61. PubMed ID: 7492586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.