These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 4083879)
21. Kinetic analysis of lactose and proton coupling in Glu379 mutants of the lactose transport protein of Streptococcus thermophilus. Poolman B; Knol J; Lolkema JS J Biol Chem; 1995 Jun; 270(22):12995-3003. PubMed ID: 7768891 [TBL] [Abstract][Full Text] [Related]
22. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Solem C; Koebmann B; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381 [TBL] [Abstract][Full Text] [Related]
23. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis. Thompson J; Turner KW; Thomas TD J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061 [TBL] [Abstract][Full Text] [Related]
24. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar. van den Bogaard PT; Kleerebezem M; Kuipers OP; de Vos WM J Bacteriol; 2000 Nov; 182(21):5982-9. PubMed ID: 11029416 [TBL] [Abstract][Full Text] [Related]
26. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus. Knol J; Veenhoff L; Liang WJ; Henderson PJ; Leblanc G; Poolman B J Biol Chem; 1996 Jun; 271(26):15358-66. PubMed ID: 8662938 [TBL] [Abstract][Full Text] [Related]
27. Comparative Transcriptomic Analysis of Giaretta S; Treu L; Vendramin V; da Silva Duarte V; Tarrah A; Campanaro S; Corich V; Giacomini A Front Microbiol; 2018; 9():1765. PubMed ID: 30131781 [No Abstract] [Full Text] [Related]
28. Carbohydrate metabolism in lactic streptococci: fate of galactose supplied in free or disaccharide form. Lee R; Molskness T; Sandine WE; Elliker PR Appl Microbiol; 1973 Dec; 26(6):951-8. PubMed ID: 4203337 [TBL] [Abstract][Full Text] [Related]
29. Transport by the lactose permease of Escherichia coli as the basis of lactose killing. Dykhuizen D; Hartl D J Bacteriol; 1978 Sep; 135(3):876-82. PubMed ID: 99437 [TBL] [Abstract][Full Text] [Related]
31. N-acetylneuraminic acid transport by Streptococcus oralis strain AR3. Byers HL; Homer KA; Tarelli E; Beighton D J Med Microbiol; 1999 Apr; 48(4):375-381. PubMed ID: 10509480 [TBL] [Abstract][Full Text] [Related]
32. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis. Park YH; McKay LL J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488 [TBL] [Abstract][Full Text] [Related]
33. Modes of lactose uptake in the yeast species Kluyveromyces marxianus. Carvalho-Silva M; Spencer-Martins I Antonie Van Leeuwenhoek; 1990 Feb; 57(2):77-81. PubMed ID: 2321931 [TBL] [Abstract][Full Text] [Related]
34. Effects of different carbon sources on metabolic profiles of carbohydrates in Streptococcus thermophilus during fermentation. Song X; Hou C; Yang Y; Ai L; Xia Y; Wang G; Yi H; Xiong Z J Sci Food Agric; 2022 Aug; 102(11):4820-4829. PubMed ID: 35229301 [TBL] [Abstract][Full Text] [Related]
35. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci. McKay LL; Walter LA; Sandine WE; Elliker PR J Bacteriol; 1969 Aug; 99(2):603-10. PubMed ID: 5808082 [TBL] [Abstract][Full Text] [Related]
36. Pathways for lactose/galactose catabolism by Streptococcus salivarius. Chen YY; Betzenhauser MJ; Snyder JA; Burne RA FEMS Microbiol Lett; 2002 Mar; 209(1):75-9. PubMed ID: 12007657 [TBL] [Abstract][Full Text] [Related]
37. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation. Thomas TD; Turner KW; Crow VL J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093 [TBL] [Abstract][Full Text] [Related]
38. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo. Thompson J J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155 [TBL] [Abstract][Full Text] [Related]
39. Evolution of carbohydrate fraction in carbonated fermented milks as affected by beta-galactosidase activity of starter strains. Guetmonde M; Nieves C; Vinderola G; Reinheimer J; de los Reyes-Gavilan CG J Dairy Res; 2002 Feb; 69(1):125-37. PubMed ID: 12047103 [TBL] [Abstract][Full Text] [Related]
40. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. Van Leeuwen CC; Postma E; Van den Broek PJ; Van Steveninck J J Biol Chem; 1991 Jul; 266(19):12146-51. PubMed ID: 1648083 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]