These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 4083889)
1. Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume. Molin G; Nilsson I Appl Environ Microbiol; 1985 Oct; 50(4):946-50. PubMed ID: 4083889 [TBL] [Abstract][Full Text] [Related]
2. Comparative Kinetic Studies and Performance Evaluation of Biofilm and Biomass Characteristics of Pseudomonas fluorescens in Degrading Synthetic Phenolic Effluent in Inverse Fluidized Bed Biofilm Reactor. Begum SS; Radha KV Water Environ Res; 2016 May; 88(5):415-24. PubMed ID: 27131305 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of phenol and cresols by mutants of Pseudomonas putida. Bayly RC; Wigmore GJ J Bacteriol; 1973 Mar; 113(3):1112-20. PubMed ID: 4347965 [TBL] [Abstract][Full Text] [Related]
4. Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogues. Wigmore GJ; Bayly RC; Di Berardino D J Bacteriol; 1974 Oct; 120(1):31-7. PubMed ID: 4418942 [TBL] [Abstract][Full Text] [Related]
5. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Hinteregger C; Leitner R; Loidl M; Ferschl A; Streichsbier F Appl Microbiol Biotechnol; 1992 May; 37(2):252-9. PubMed ID: 1368244 [TBL] [Abstract][Full Text] [Related]
6. Sand administration as an instrument for biofilm control of Pseudomonas putida ATCC 11172 in chemostat cultures. Molin G; Nilsson I Biotechnol Bioeng; 1985 Jan; 27(1):117-20. PubMed ID: 18553582 [TBL] [Abstract][Full Text] [Related]
7. Effect of carbon dioxide on growth of Pseudomonas putida ATCC 11172 on asparagine, citrate, glucose, and lactate in batch and continuous culture. Molin G Can J Microbiol; 1985 Sep; 31(9):763-6. PubMed ID: 3936609 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Loh KC; Wang SJ Biodegradation; 1997-1998; 8(5):329-38. PubMed ID: 15765612 [TBL] [Abstract][Full Text] [Related]
9. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous chromium(VI) reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance. Nkhalambayausi-Chirwa EM; Wang YT Water Res; 2001 Jun; 35(8):1921-32. PubMed ID: 11337838 [TBL] [Abstract][Full Text] [Related]
11. Characterization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol. Collins LD; Daugulis AJ Appl Microbiol Biotechnol; 1997 Jul; 48(1):18-22. PubMed ID: 9274043 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. González G; Herrera G; García MT; Peña M Bioresour Technol; 2001 Nov; 80(2):137-42. PubMed ID: 11563704 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient phenol degradation in a batch moving bed biofilm reactor: benefiting from biofilm-enhancing bacteria. Irankhah S; Abdi Ali A; Reza Soudi M; Gharavi S; Ayati B World J Microbiol Biotechnol; 2018 Oct; 34(11):164. PubMed ID: 30368594 [TBL] [Abstract][Full Text] [Related]
14. Shear stress effects on production of exopolymeric substances and biofilm characteristics during phenol biodegradation by immobilized Pseudomonas desmolyticum (NCIM2112) cells in a pulsed plate bioreactor. Veena BR; Shetty K V; Saidutta MB Prep Biochem Biotechnol; 2016 Jul; 46(5):421-8. PubMed ID: 26178235 [TBL] [Abstract][Full Text] [Related]
15. Regulation of phenol degradation in Pseudomonas putida. Janke D; Pohl R; Fritsche W Z Allg Mikrobiol; 1981; 21(4):295-303. PubMed ID: 7293241 [TBL] [Abstract][Full Text] [Related]
16. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. Farrell A; Quilty B J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804 [TBL] [Abstract][Full Text] [Related]
17. Visualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1. Herzberg M; Dosoretz CG; Kuhn J; Klein S; Green M Water Res; 2006 Aug; 40(14):2704-12. PubMed ID: 16814359 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Shen H; Wang YT Appl Environ Microbiol; 1995 Jul; 61(7):2754-8. PubMed ID: 7618887 [TBL] [Abstract][Full Text] [Related]
19. Use of salicylate to estimate the "threshold" inducer level for de novo synthesis of the phenol-degrading enzymes in Pseudomonas putida strain H. Janke D J Basic Microbiol; 1987; 27(2):83-9. PubMed ID: 3656095 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of phenol on the rates of ammonia oxidation by Nitrosomonas europaea grown under batch, continuous fed, and biofilm conditions. Lauchnor EG; Semprini L Water Res; 2013 Sep; 47(13):4692-700. PubMed ID: 23770483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]