These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 4084098)

  • 1. Fluid volume changes during hemodialysis monitored with the impedance technique.
    Tedner B; Lins LE
    Artif Organs; 1985 Nov; 9(4):416-20. PubMed ID: 4084098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of impedance technique for fluid-volume monitoring during hemodialysis.
    Tedner B; Lins LE; Asaba H; Wehle B
    Int J Clin Monit Comput; 1985; 2(1):3-8. PubMed ID: 3835223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid volume monitoring with electrical impedance technique during hemodialysis.
    Tedner B; Lins LE
    Artif Organs; 1984 Feb; 8(1):66-71. PubMed ID: 6703929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole body impedance measurements reflect total body water changes. A study in hemodialysis patients.
    Ljungqvist O; Hedenborg G; Jacobson SH; Lins LE; Samuelson K; Tedner B; Zetterholm UB
    Int J Clin Monit Comput; 1990 Jul; 7(3):163-9. PubMed ID: 2250126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of fluid shifts during chronic hemodialysis using bioimpedance spectroscopy and an in-line hematocrit monitor.
    Jabara AE; Mehta RL
    ASAIO J; 1995; 41(3):M682-7. PubMed ID: 8573892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance cardiography: a potential monitor for hemodialysis.
    Wynne JL; Ovadje LO; Akridge CM; Sheppard SW; Vogel RL; Van de Water JM
    J Surg Res; 2006 Jun; 133(1):55-60. PubMed ID: 16631198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid volumes determination by impedance spectroscopy and hematocrit monitoring: application to pediatric hemodialysis.
    Fenech M; Maasrani M; Jaffrin MY
    Artif Organs; 2001 Feb; 25(2):89-98. PubMed ID: 11251474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring changes in fluid status with a wireless multisensor monitor: results from the Fluid Removal During Adherent Renal Monitoring (FARM) study.
    Anand IS; Doan AD; Ma KW; Toth JA; Geyen KJ; Otterness S; Chakravarthy N; Katra RP; Libbus I
    Congest Heart Fail; 2012; 18(1):32-6. PubMed ID: 22277175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring intracellular, interstitial, and intravascular volume changes during fluid management procedures.
    Montgomery LD; Gerth WA; Montgomery RW; Lew SQ; Klein MM; Stewart JM; Medow MS; Velasquez MT
    Med Biol Eng Comput; 2013 Oct; 51(10):1167-75. PubMed ID: 23549923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of fluid shifts of body compartments using both bioimpedance analysis and blood volume monitoring.
    Yu SJ; Kim DH; Oh DJ; Yu SH; Kang ET
    J Korean Med Sci; 2006 Feb; 21(1):75-80. PubMed ID: 16479069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic and biochemical benefits of the objective measurement of fluid status in hemodialysis patients.
    Kim S; Sung J; Jung ES; Park HC; Lee H; Chin HJ; Kim DK; Kim YS; Han JS; Joo KW
    Tohoku J Exp Med; 2012 Oct; 228(2):125-33. PubMed ID: 22990525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of dry weight by monitoring changes in blood volume during hemodialysis using Crit-Line.
    Rodriguez HJ; Domenici R; Diroll A; Goykhman I
    Kidney Int; 2005 Aug; 68(2):854-61. PubMed ID: 16014066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrafiltration monitor for hemodialysis research.
    Gisser D; Strait G; Zelman A; Bastidas V; Harrow J; Kablitz C; Stephen R
    IEEE Trans Biomed Eng; 1983 Feb; 30(2):132-6. PubMed ID: 6832792
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data.
    Scharfetter H; Monif M; László Z; Lambauer T; Hutten H; Hinghofer-Szalkay H
    Kidney Int; 1997 Apr; 51(4):1078-87. PubMed ID: 9083273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of segmental with whole-body impedance measurements in peritoneal dialysis patients.
    Nescolarde L; Doñate T; Piccoli A; Rosell J
    Med Eng Phys; 2008 Sep; 30(7):817-24. PubMed ID: 17977778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable impedance monitoring system for dialysis patients.
    Bonnet S; Bourgerette A; Gharbi S; Rubeck C; Arkouche W; Massot B; McAdams E; Montalibet A; Jallon P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5196-5199. PubMed ID: 28269435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the relation between fluid distribution change in tissue and impedance change during hemodialysis by frequency characteristics of the flowing blood.
    Sakamoto K; Sunaga R; Nakamura K; Sato Y; Fujii M; Kanai H; Tsuchida T; Ueno A; Kanai N; Hasegawa K
    Ann N Y Acad Sci; 1999 Apr; 873():77-88. PubMed ID: 10372153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sum of segmental bioimpedance analysis during ultrafiltration and hemodialysis reduces sensitivity to changes in body position.
    Zhu F; Schneditz D; Levin NW
    Kidney Int; 1999 Aug; 56(2):692-9. PubMed ID: 10432410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comments on the interpretation of tissue impedance measurements during hemodialysis.
    Verheij R; Veenman CS; den Bakker JV; van Duyl WA
    Blood Purif; 1996; 14(1):8-14. PubMed ID: 8718559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry weight targeting: The art and science of conventional hemodialysis.
    Ohashi Y; Sakai K; Hase H; Joki N
    Semin Dial; 2018 Nov; 31(6):551-556. PubMed ID: 29876972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.