These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 4084301)

  • 1. Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP.
    Jacobus WE
    Biochem Biophys Res Commun; 1985 Dec; 133(3):1035-41. PubMed ID: 4084301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple analysis of the "phosphocreatine shuttle".
    Meyer RA; Sweeney HL; Kushmerick MJ
    Am J Physiol; 1984 May; 246(5 Pt 1):C365-77. PubMed ID: 6372517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells.
    McClellan G; Weisberg A; Winegrad S
    Am J Physiol; 1983 Nov; 245(5 Pt 1):C423-7. PubMed ID: 6638167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S; Carr LJ; Kreutzer U; Jue T
    Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergetic consequences of cardiac phosphocreatine depletion induced by creatine analogue feeding.
    Zweier JL; Jacobus WE; Korecky B; Brandejs-Barry Y
    J Biol Chem; 1991 Oct; 266(30):20296-304. PubMed ID: 1939088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular distribution of phosphagens in isolated perfused rat heart.
    Kauppinen RA; Hiltunen JK; Hassinen IE
    FEBS Lett; 1980 Apr; 112(2):273-6. PubMed ID: 7371865
    [No Abstract]   [Full Text] [Related]  

  • 11. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy.
    Saks VA; Belikova YO; Kuznetsov AV; Khuchua ZA; Branishte TH; Semenovsky ML; Naumov VG
    Am J Physiol; 1991 Oct; 261(4 Suppl):30-8. PubMed ID: 1928451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The creatine phosphate energy shuttle--the molecular asymmetry of a "pool".
    Bessman SP
    Anal Biochem; 1987 Mar; 161(2):519-23. PubMed ID: 3578809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac energy metabolism: contributions from nuclear magnetic resonance.
    Brown TR
    Circulation; 1985 Nov; 72(5 Pt 2):IV18-21. PubMed ID: 2414030
    [No Abstract]   [Full Text] [Related]  

  • 16. Creatine-creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity.
    Fedosov SN
    Biochim Biophys Acta; 1994 Oct; 1208(2):238-46. PubMed ID: 7947954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 18. Response of myocardial cellular energy metabolism to variation of buffer composition during open-chest experimental cardiopulmonary resuscitation in the pig.
    Wiklund L; Ronquist G; Roomans GM; Rubertsson S; Waldenström A
    Eur J Clin Invest; 1997 May; 27(5):417-26. PubMed ID: 9179550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
    van Beek JH
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C815-29. PubMed ID: 17581855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM
    Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.