These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 4084506)
1. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature. Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506 [TBL] [Abstract][Full Text] [Related]
2. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated. Siebert F; Mäntele W; Gerwert K Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543 [TBL] [Abstract][Full Text] [Related]
3. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts. Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates. Bagley KA; Eisenstein L; Ebrey TG; Tsuda M Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842 [TBL] [Abstract][Full Text] [Related]
5. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032 [TBL] [Abstract][Full Text] [Related]
6. FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization. Kandori H; Maeda A Biochemistry; 1995 Oct; 34(43):14220-9. PubMed ID: 7578021 [TBL] [Abstract][Full Text] [Related]
7. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin. Deng H; Callender RH Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083 [TBL] [Abstract][Full Text] [Related]
8. Photophysiological functions of visual pigments. Yoshizawa T Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325 [TBL] [Abstract][Full Text] [Related]
9. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Ganter UM; Gärtner W; Siebert F Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686 [TBL] [Abstract][Full Text] [Related]
10. Two forms of intermediates of frog rhodopsin in rod outer segments. Sasaki N; Tokunaga F; Yoshizawa T Biochim Biophys Acta; 1983 Jan; 722(1):80-7. PubMed ID: 6600624 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness. Fahmy K; Zvyaga TA; Sakmar TP; Siebert F Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673 [TBL] [Abstract][Full Text] [Related]
12. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage. Eyring G; Mathies R Proc Natl Acad Sci U S A; 1979 Jan; 76(1):33-7. PubMed ID: 284349 [TBL] [Abstract][Full Text] [Related]
13. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR; Einterz CM; Knapp HM; Murray LP Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878 [TBL] [Abstract][Full Text] [Related]
14. Coupled HOOP signature correlates with quantum yield of isorhodopsin and analog pigments. Bovee-Geurts PHM; Lugtenburg J; DeGrip WJ Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):118-125. PubMed ID: 27836700 [TBL] [Abstract][Full Text] [Related]
15. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction. Sulkes M; Lewis A; Marcus MA Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380 [TBL] [Abstract][Full Text] [Related]
16. Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II. Mao B; Ebrey TG; Crouch R Biophys J; 1980 Feb; 29(2):247-56. PubMed ID: 7260250 [TBL] [Abstract][Full Text] [Related]
17. 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin. Smith SO; Courtin J; de Groot H; Gebhard R; Lugtenburg J Biochemistry; 1991 Jul; 30(30):7409-15. PubMed ID: 1649627 [TBL] [Abstract][Full Text] [Related]
18. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision. Palings I; van den Berg EM; Lugtenburg J; Mathies RA Biochemistry; 1989 Feb; 28(4):1498-507. PubMed ID: 2719913 [TBL] [Abstract][Full Text] [Related]
19. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin. Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611 [TBL] [Abstract][Full Text] [Related]
20. The photoconversion of lumirhodopsin at 77 degrees K. Estimation of the quantum efficiency. Becher B Biophys J; 1980 Apr; 30(1):1-7. PubMed ID: 7260259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]